scholarly journals Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yan He ◽  
Zhifang Cao ◽  
Lianxiang Ma

A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i) the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii) the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

2002 ◽  
Vol 17 (9) ◽  
pp. 2457-2464 ◽  
Author(s):  
Yafei Zhang ◽  
Mikka N.-Gamo ◽  
Kiyoharu Nakagawa ◽  
Toshihiro Ando

A simple and novel method was developed for efficient synthesis of aligned multiwalled carbon nanotubes (CNTs) in methanol and ethanol under normal pressure. The CNTs' alignment and structures were investigated using Raman scattering and x-ray diffraction spectroscopy. A unique kind of coupled CNT was synthesized in which one rotated to the left and one rotated to the right. Chains periodically bridged the coupled CNTs. The growth mechanism of the CNTs within organic liquid is proposed to be a catalytic process at the Fe film surface in a dynamic and thermal nonequilibrium condition in organic liquids.


NANO ◽  
2008 ◽  
Vol 03 (06) ◽  
pp. 461-467 ◽  
Author(s):  
JIAN-SHAN YE ◽  
GUANGQUAN MO ◽  
WEI DE ZHANG ◽  
XIAO LIU ◽  
FWU-SHAN SHEU

Multiwalled carbon nanotubes (MWNTs) can be etched at potentials more positive than 1.7 V versus Ag / AgCl (3 M KCl ) in 0.2 M HNO 3. The electrochemically etched MWNTs show an increase in electrochemical impedance and sluggish electron transfer kinetics, and lose the electrocatalytic effects toward the oxidation of glucose, H 2 O 2, uric acid (UA) and L-ascorbic acid (L-AA). Transmission electron microscope (TEM) images reveal that the nanotube tips are cut off by electrochemical oxidation. This may lead to the degradation of electrocatalytic ability in the MWNTs. Furthermore, the current response after different electrochemically etched cycles shows that the electrocatalytic ability of the MWNTs toward different molecules can be tuned by etched cycles. For example, five etched cycles leads to the total disappearance of the oxidative response to L-AA, with the remaining over 50% of the UA current response in the L-AA and UA mixture. Thus, electrochemical etching is a simple yet novel way to tune the electrocatalytic reactivity and improve the selectivity of the MWNTs.


2021 ◽  
Author(s):  
STEPAN V. LOMOV ◽  
JEONYOON LEEJEONYOON LEE ◽  
BRIAN L. WARDLE ◽  
NIKITA A. GUDKOV ◽  
ISKANDER S. AKHATOV ◽  
...  

The paper considers nanocomposites, reinforced with aligned carbon nanotubes (A- CNTs). Nominally aligned, the CNTs in the forest are wavy, which has important consequences in downgraded mechanical properties, and influences electric and thermal performance. The most detailed geometrical model of A-CNTs was proposed by Stein and Wardle (Nanotechnology, 27:035701, 2015). It creates a centerline trajectory of a CNT in steps, each step defining a section of the CNT, growing in the alignment direction with certain deviations. The paper, starting from this framework, formulates a model of the CNT geometry, which is based on the concept of correlation length of the CNT waviness and maximum admissible CNT curvature and torsion. The value of the maximum curvature can be linked to the buckling criteria for CNTs, or derived from ab initio and finite element modelling. It is used as a limiting factor for the growth, defining the waviness and tortuosity of the CNTs. The CNTs in the forest are placed in a random non-regular way, using Voronoi tessellation. The full paper includes investigation of the proposed algorithm for several values of the CNT volume fraction (in the range 0.5%…8%), the dependency of the modelled geometry on the curvature, and the apparent twist of the CNT centerlines. The modelling results are compared with experimental observations in 3D TEM imaging.


2017 ◽  
Vol 7 ◽  
pp. 184798041770717 ◽  
Author(s):  
Anna D Dobrzańska-Danikiewicz ◽  
Weronika Wolany ◽  
Dariusz Łukowiec ◽  
Karolina Jurkiewicz ◽  
Paweł Niedziałkowski

The purpose of the article is to discuss the process of oxidation of carbon nanotubes subsequently subjected to the process of decoration with rhenium nanoparticles. The influence of functionalization in an oxidizing medium is presented and the results of investigations using Raman spectroscopy and infrared spectroscopy are discussed. Multiwalled carbon nanotubes rhenium-type nanocomposites with the weight percentage of 10%, 20% and 30% of rhenium are also presented in the article. The structural components of such nanocomposites are carbon nanotubes decorated with rhenium nanoparticles. Microscopic examinations under transmission electron microscope and scanning transmission electron microscope using the bright and dark field confirm that nanocomposites containing about 20% of rhenium have the most homogenous structure.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 669 ◽  
Author(s):  
Mariachiara Trapani ◽  
Antonino Mazzaglia ◽  
Anna Piperno ◽  
Annalaura Cordaro ◽  
Roberto Zagami ◽  
...  

The ability of multiwalled carbon nanotubes (MWCNTs) covalently functionalized with polyamine chains of different length (ethylenediamine, EDA and tetraethylenepentamine, EPA) to induce the J-aggregation of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) was investigated in different experimental conditions. Under mild acidic conditions, protonated amino groups allow for the assembly by electrostatic interaction with the diacid form of TPPS, leading to hybrid nanomaterials. The presence of only one pendant amino group for a chain in EDA does not lead to any aggregation, whereas EPA (with four amine groups for chain) is effective in inducing J-aggregation using different mixing protocols. These nanohybrids have been characterized through UV/Vis extinction, fluorescence emission, resonance light scattering and circular dichroism spectroscopy. Their morphology and chemical composition have been elucidated through transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). TEM and STEM analysis evidence single or bundles of MWCNTs in contact with TPPS J-aggregates nanotubes. The nanohybrids are quite stable for days, even in aqueous solutions mimicking physiological medium (NaCl 0.15 M). This property, together with their peculiar optical features in the therapeutic window of visible spectrum, make them potentially useful for biomedical applications.


2012 ◽  
Vol 184-185 ◽  
pp. 1289-1293
Author(s):  
Lu Zhi Wang ◽  
Lin Yu ◽  
Xiao Ling Cheng ◽  
Jun He ◽  
Le Jia Lin ◽  
...  

The Dopamine-modified multiwalled carbon nanotubes (MWNT-Dopa) were synthesized by chemical reaction between dopamine (Dopa) and multiwalled carbon nanotubes which oxidazed by mixed-acid (MWNT-COOH). The structure of MWNT-Dopa were analyzed by Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric (TG), Transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques and the dispersity of MWNT-Dopa were studied by Dispersion stability analyzer. The results show that dopamine has been grafted on multiwalled carbon nanotubes successfully, and a dopamine layer which wraps on the surface of multiwalled nanotubes make multiwalled nanotubes have outstanding dispersity in water.


Sign in / Sign up

Export Citation Format

Share Document