scholarly journals The Effect of Graphite on the Physical and Mechanical Performance of Foam Concrete

Author(s):  
Jun Liu ◽  
Hongtao Mu ◽  
Jun Chi
2015 ◽  
Vol 1089 ◽  
pp. 265-269 ◽  
Author(s):  
Jun Liu ◽  
Xiang Mei Meng ◽  
Hong Tao Mu

To figure out the physical and mechanical performance of graphite foam concrete,orthogonal test was applied to ascertain four factors for graphite foamed cement-based material (GFCBM). The influence of water cement ratio, graphite content, hydrogen peroxide content and sodium sulfite content on the dry density, porosity and compressive strength was also discussed. The results show that sodium sulfite has a relatively significant effect on the physical and mechanical performance. The dry density and compressive strength increases first and then decrease with the water cement ratio, adding of hydrogen peroxide and sodium sulfite increasing and increase with adding of the graphite. The trend of porosity is opposite to the dry density and compressive strength. The optimal scheme for this experiment is water cement ratio 0.68, 5% graphite, 8% hydrogen peroxide and 6% sodium sulfate.


2019 ◽  
Vol 9 (5) ◽  
pp. 876 ◽  
Author(s):  
Yu Song ◽  
David Lange

Foam concrete is a low-density controlled strength material that can potentially be used for accommodating different types of particles—recycled fine aggregate being an example. The paste matrix of this material has a cellular microstructure, and bulk performance is readily affected by the inclusion of fines. To study the effect of inclusion of fines on mechanical performance and foam structure of foam concrete, a group of 0.55 g/cm3 foam–sand composite mixtures with high-volume fly ash replacement are investigated. The elastic modulus is measured by a vibrational frequency test. The crushing mechanics are determined by the load-displacement response from a penetration test. The effect of particle inclusion on the foam concrete microstructure is characterized using micro computed tomography. The results indicate that use of fine-graded sand particles at a small dosage simultaneously reduces cement content and enhances the crushing performance, however poor material performance is observed for a high sand content. The cellular structure of the foam–sand composite, and thus its mechanical behavior, can be substantially diminished by larger sand particles, especially when the particle size is larger than the voids in foam.


2019 ◽  
Author(s):  
Peter Peter ◽  
Claudia Creighton ◽  
David Fox ◽  
Pablo Mota Santiago ◽  
Adrian Hawley ◽  
...  

Author(s):  
Kulwant Singh ◽  
Gurbhinder Singh ◽  
Harmeet Singh

The weight reduction concept is most effective to reduce the emissions of greenhouse gases from vehicles, which also improves fuel efficiency. Amongst lightweight materials, magnesium alloys are attractive to the automotive sector as a structural material. Welding feasibility of magnesium alloys acts as an influential role in its usage for lightweight prospects. Friction stir welding (FSW) is an appropriate technique as compared to other welding techniques to join magnesium alloys. Field of friction stir welding is emerging in the current scenario. The friction stir welding technique has been selected to weld AZ91 magnesium alloys in the current research work. The microstructure and mechanical characteristics of the produced FSW butt joints have been investigated. Further, the influence of post welding heat treatment (at 260 °C for 1 h) on these properties has also been examined. Post welding heat treatment (PWHT) resulted in the improvement of the grain structure of weld zones which affected the mechanical performance of the joints. After heat treatment, the tensile strength and elongation of the joint increased by 12.6 % and 31.9 % respectively. It is proven that after PWHT, the microhardness of the stir zone reduced and a comparatively smoothened microhardness profile of the FSW joint obtained. No considerable variation in the location of the tensile fracture was witnessed after PWHT. The results show that the impact toughness of the weld joints further decreases after post welding heat treatment.


Author(s):  
Byung-Jae Kim ◽  
Hyeon-Seok Seo ◽  
Won-Ho Lee ◽  
Jong-Hyun Ahn ◽  
Youn-Jea Kim

Diabetes ◽  
1984 ◽  
Vol 33 (12) ◽  
pp. 1138-1143 ◽  
Author(s):  
B. H. Tan ◽  
G. L. Wilson ◽  
S. W. Schaffer

Sign in / Sign up

Export Citation Format

Share Document