Comparison of Bending Strength among Plate, Steinmann Pin, and Headless Compression Screw Fixations for Proximal Ulnar Shaft Fracture in Sawbones

2020 ◽  
Vol 25 (4) ◽  
pp. 267-273
Author(s):  
Jinyoung Han ◽  
Jin Rok Oh ◽  
Jaewoong Um

Purpose: Although plate osteosynthesis is commonly used to treat proximal ulna fracture, its treatment method is controversial because of complications such as large incision, long operation time, and soft tissue injury. Therefore, intramedullary headless compression screw (HCS) and Steinmann pin are considered as alternative treatment options. In this study, we aim to compare bending strength of plate and cortical screws, HCS, and Steinmann pin for proximal ulnar shaft fracture with sawbone. Methods: Transverse type fractures were made intentionally at the distal 7 cm from the proximal end of ulna sawbones and fixated with plate, HCS, and Steinmann pin after reduction. Three-point bending tests were performed with total of 21 sawbones, seven pieces for each group. Results: Average ultimate bending strength for each group was as follows; 521.7N for plate fixation group, 706.4N for HCS fixation group, and 812.6N for Steinmann pin fixation group. Statistically significant results were observed among the three groups (p<0.01). When two groups were compared separately, Steinmann pin fixation and plate fixation (p<0.01), Steinmann pin and HCS fixation (p=0.047) showed statistical significance. There was a significant trend between HCS and plate fixation group (p=0.064).Conclusion: HCS and Steinmann pin fixation showed higher bending strength when compared to plate fixation for proximal ulnar shaft fracture in sawbone. Although further studies are needed, HCS and Steinmann pin fixation are promising fixation methods that may be used as an alternative to plate fixation.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
Heng-Li Huang ◽  
...  

Abstract Background Metacarpal shaft fracture is a common fracture in hand trauma injuries. Surgical intervention is indicated when fractures are unstable or involve considerable displacement. Current fixation options include Kirschner wire, bone plates, and intramedullary headless screws. Common complications include joint stiffness, tendon irritation, implant loosening, and cartilage damage. Objective We propose a modified fixation approach using headless compression screws to treat transverse or short-oblique metacarpal shaft fracture. Materials and methods We used a saw blade to model transverse metacarpal neck fractures in 28 fresh porcine metacarpals, which were then treated with the following four fixation methods: (1) locked plate with five locked bicortical screws (LP group), (2) regular plate with five bicortical screws (RP group), (3) two Kirschner wires (K group), and (4) a headless compression screw (HC group). In the HC group, we proposed a novel fixation model in which the screw trajectory was oblique to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; thus, the screw did not damage the articular cartilage. The specimens were tested using a modified three-point bending test on a material testing system. The maximum fracture forces and stiffness values of the four fixation types were determined by observing the force–displacement curves. Finally, the Kruskal–Wallis test was adopted to process the data, and the exact Wilcoxon rank sum test with Bonferroni adjustment was performed to conduct paired comparisons among the groups. Results The maximum fracture forces (median ± interquartile range [IQR]) of the LP, RP, HC, and K groups were 173.0 ± 81.0, 156.0 ± 117.9, 60.4 ± 21.0, and 51.8 ± 60.7 N, respectively. In addition, the stiffness values (median ± IQR) of the LP, HC, RP, and K groups were 29.6 ± 3.0, 23.1 ± 5.2, 22.6 ± 2.8, and 14.7 ± 5.6 N/mm, respectively. Conclusion Headless compression screw fixation provides fixation strength similar to locked and regular plates for the fixation of metacarpal shaft fractures. The headless screw was inserted obliquely to the long axis of the metacarpal bone. The entry point of the screw was in the dorsum of the metacarpal neck, and the exit point was in the volar cortex of the supracondylar region; therefore the articular cartilage iatrogenic injury can be avoidable. This modified fixation method may prevent tendon irritation and joint cartilage violation caused by plating and intramedullary headless screw fixation.


Author(s):  
Duncan S. Van Nest ◽  
Michael Reynolds ◽  
Eugene Warnick ◽  
Matthew Sherman ◽  
Asif M. Ilyas

Abstract Background Headless compression screw fixation with bone grafting has been the mainstay of treatment for scaphoid nonunion for the past several decades. Recently, locked volar plate fixation has gained popularity as a technique for scaphoid fixation, especially for recalcitrant or secondary nonunions. Purpose The purpose of this meta-analysis was to compare union rates and clinical outcomes between locked volar plate fixation and headless compression screw fixation for the treatment of scaphoid nonunions. Methods A literature search was performed for studies documenting treatment outcomes for scaphoid nonunions from 2000 to 2020. Inclusion criteria consisted of (1) average age > 18 years, (2) primary study using screw fixation, plate fixation, or both, with discrete data reported for each procedure, and (3) average follow-up of at least 3 months. Exclusion criteria consisted of studies with incomplete or missing data on union rates. Data from each study was weighted, combined within treatment groups, and compared across treatment groups using a generalized linear model or binomial distribution. Results Following title and full-text review, 23 articles were included for analysis. Preoperatively, patients treated with plate fixation had significantly longer time from injury to surgery and were more likely to have failed prior surgical intervention. There was no significant difference between union rates at 92 and 94% for screw and plate fixation, respectively. However, plate fixation resulted in longer time to union and lower modified Mayo wrist scores. Conclusion Patients treated with locked volar plate fixation were more likely to be used for recalcitrant or secondary nonunions. There was no statistically significant difference in union rates between screw and plate fixation. The results from this meta-analysis support the select use of locked volar plate fixation for scaphoid nonunion, especially recalcitrant nonunions and those that have failed prior surgical repair.


Foot & Ankle ◽  
1993 ◽  
Vol 14 (2) ◽  
pp. 107-110 ◽  
Author(s):  
Todd J. Albert ◽  
Keith L. Wapner

First metatarsophalangeal joint fusion is a successful pro cedure for the treatment of rheumatoid forefoot problems, severe osteoarthritis of that joint, and failed first ray sur geries. We have identified three patients with fracture of the first metatarsal after fusion with Steinmann pins. Pen etration of the plantar and/or plantar medial cortex of these pins should be avoided. If penetration occurs, we recommend casting after pin removal.


2020 ◽  
Vol 5 (10) ◽  
pp. 624-629
Author(s):  
Marco Guidi ◽  
Florian S. Frueh ◽  
Inga Besmens ◽  
Maurizio Calcagni

The intramedullary headless compression screw (IMCS) technique represents a reliable alternative to percutaneous Kirschner-wire and plate fixation with minimal complications. Transverse fractures of the metacarpal shaft represent a good indication for this technique. Non-comminuted subcapital and short oblique fractures can also be treated with IMCS. This technique should not be used in the presence of an open epiphysis, infection and, most of all, in subchondral fractures, because of the lack of purchase for the head of the screw. A double screw construct is recommended for comminuted subcapital fractures of the metacarpal to avoid metacarpal shortening. IMCS can even be applied for peri-articular fractures of the proximal third of the phalanx and in some multi-fragmentary proximal and middle phalangeal fractures. Usually the intramedullary screws are not removed. The main indications for screw removal are joint protrusion, infection and screw breakage after new fracture. Cite this article: EFORT Open Rev 2020;5:624-629. DOI: 10.1302/2058-5241.5.190068


2017 ◽  
Vol 22 (01) ◽  
pp. 35-38 ◽  
Author(s):  
Eichi Itadera ◽  
Takahiro Yamazaki

We developed a new internal fixation method for extra-articular fractures at the base of the proximal phalanx using a headless compression screw to achieve rigid fracture fixation through a relatively easy technique. With the metacarpophalangeal joint of the involved finger flexed, a smooth guide-pin is inserted into the intramedullary canal of the proximal phalanx through the metacarpal head and metacarpophalangeal joint. Insertion tunnels are made over the guide-pin using a cannulated drill. Then, a headless cannulated screw is placed into the proximal phalanx. All of five fractures treated by this procedure obtained satisfactory results.


Hand ◽  
2021 ◽  
pp. 155894472097411
Author(s):  
Luke T. Nicholson ◽  
Kristen M. Sochol ◽  
Ali Azad ◽  
Ram Kiran Alluri ◽  
J. Ryan Hill ◽  
...  

Background: Management of scaphoid nonunions with bone loss varies substantially. Commonly, internal fixation consists of a single headless compression screw. Recently, some authors have reported on the theoretical benefits of dual-screw fixation. We hypothesized that using 2 headless compression screws would impart improved stiffness over a single-screw construct. Methods: Using a cadaveric model, we compared biomechanical characteristics of a single tapered 3.5- to 3.6-mm headless compression screw with 2 tapered 2.5- to 2.8-mm headless compression screws in a scaphoid waist nonunion model. The primary outcome measurement was construct stiffness. Secondary outcome measurements included load at 1 and 2 mm of displacement, load to failure for each specimen, and qualitative assessment of mode of failure. Results: Stiffness during load to failure was not significantly different between single- and double-screw configurations ( P = .8). Load to failure demonstrated no statistically significant difference between single- and double-screw configurations. Using a qualitative assessment, the double-screw construct maintained rotational stability more than the single-screw construct ( P = .029). Conclusions: Single- and double-screw fixation constructs in a cadaveric scaphoid nonunion model demonstrate similar construct stiffness, load to failure, and load to 1- and 2-mm displacement. Modes of failure may differ between constructs and represent an area for further study. The theoretical benefit of dual-screw fixation should be weighed against the morphologic limitations to placing 2 screws in a scaphoid nonunion.


2019 ◽  
Vol 12 (S 01) ◽  
pp. S39-S44
Author(s):  
Michael Okoli ◽  
Kevin Lutsky ◽  
Michael Rivlin ◽  
Brian Katt ◽  
Pedro Beredjiklian

Abstract Introduction The purpose of this study is to determine the radiographic dimensions of the finger metacarpals and to compare these measurements with headless compression screws commonly used for fracture fixation. Materials and Methods We analyzed computed tomography (CT) scans of the index, long, ring, and small metacarpal bones and measured the metacarpal length, distance from the isthmus to the metacarpal head, and intramedullary diameter of the isthmus. Metacarpals with previous fractures or hardware were excluded. We compared these dimensions with the size of several commercially available headless screws used for intramedullary fixation. Results A total of 223 metacarpals from 57 patients were analyzed. The index metacarpal was the longest, averaging 67.6 mm in length. The mean distance from the most distal aspect of the metacarpal head to the isthmus was 40.3, 39.5, 34.4, and 31 mm for the index, long, ring, and small metacarpals, respectively. The narrowest diameter of the isthmus was a mean of 2.6, 2.7, 2.3, and 3 mm for the index, long, ring, and small metacarpals, respectively. Of 33 commercially available screws, only 27% percent reached the isthmus of the index metacarpal followed by 42, 48, and 58% in the long, ring, and small metacarpals, respectively. Conclusion The index and long metacarpals are at a particular risk of screw mismatch given their relatively long lengths and narrow isthmus diameters.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yung-Cheng Chiu ◽  
Cheng-En Hsu ◽  
Tsung-Yu Ho ◽  
Yen-Nien Ting ◽  
Ming-Tzu Tsai ◽  
...  

Abstract Background Metacarpal shaft fractures are a common hand trauma. The current surgical fixation options for such fractures include percutaneous Kirschner wire pinning and nonlocking and locking plate fixation. Although bone plate fixation, compared with Kirschner wire pinning, has superior fixation ability, a consensus has not been reached on whether the bone plate is better placed on the dorsal or lateral side. Objective The purpose of this study was to evaluate the fixation of locking and regular bone plates on the dorsal and lateral sides of a metacarpal shaft fracture. Materials and methods Thirty-five artificial metacarpal bones were used in the experiment. Metacarpal shaft fractures were created using a saw blade, which were then treated with four types of fixation as follows: (1) a locking plate with four locking bicortical screws on the dorsal side (LP_D); (2) a locking plate with four locking bicortical screws on the lateral side (LP_L); (3) a regular plate with four regular bicortical screws on the dorsal side (RP_D); (4) a regular plate with four regular bicortical screws on the lateral side (RP_D); and (5) two K-wires (KWs). All specimens were tested through cantilever bending tests on a material testing system. The maximum fracture force and stiffness of the five fixation types were determined based on the force–displacement data. The maximum fracture force and stiffness of the specimens with metacarpal shaft fractures were first analyzed using one-way analysis of variance and Tukey’s test. Results The maximum fracture force results of the five types of metacarpal shaft fracture were as follows: LP_D group (230.1 ± 22.8 N, mean ± SD) ≅ RP_D group (228.2 ± 13.4 N) > KW group (94.0 ± 17.4 N) > LP_L group (59.0 ± 7.9 N) ≅ RP_L group (44.5 ± 3.4 N). In addition, the stiffness results of the five types of metacarpal shaft fracture were as follows: LP_D group (68.7 ± 14.0 N/mm) > RP_D group (54.9 ± 3.2 N/mm) > KW group (20.7 ± 5.8 N/mm) ≅ LP_L group (10.6 ± 1.7 N/mm) ≅ RP_L group (9.4 ± 1.2 N/mm). Conclusion According to our results, the mechanical strength offered by lateral plate fixation of a metacarpal shaft fracture is so low that even KW fixation can offer relatively superior mechanical strength; this is regardless of whether a locking or nonlocking plate is used for lateral plate fixation. Such fixation can reduce the probability of extensor tendon adhesion. Nevertheless, our results indicated that when lateral plate fixation is used for fixating a metacarpal shaft fracture in a clinical setting, whether the mechanical strength offered by such fixation would be strong enough to support bone union remains questionable.


Author(s):  
Hassan A. Qureshi ◽  
Kashyap Komarraju Tadisina ◽  
Gianfranco Frojo ◽  
Kyle Y. Xu ◽  
Bruce A. Kraemer

Abstract Background Isolated traumatic lunate fractures without other surgical carpal bone or ligamentous injuries are extremely rare, with few published reports available to guide management. Lunate fracture management is controversial, and depends on concurrent injuries of adjacent carpal bones, ligaments, risk of ischemia, and displacement. Case Description A 48-year-old right hand dominant man suffered a crush injury to the left hand caught between a forklift and a metal shelf. Radiographs and computed tomography imaging of the left hand and wrist were significant for a displaced Teisen IV fracture of the lunate. A dorsal ligament sparing approach was utilized to access, reduce, and fixate the fracture using a headless compression screw. After immobilization and rehab, at 9 months after initial injury, the patient was back to work on full duty without restriction and pleased with the results of his treatment. Literature Review A literature review of lunate fracture compression screw fixation was performed and revealed a total of three reports indicating successful treatment of fractures, with patients returning to full activity. Clinical Relevance Lunate fractures are rare, often missed, and treating these injuries can be challenging, particularly in the setting of acute trauma. Based on our limited experience, we believe that open reduction and internal fixation of isolated Teisen IV lunate fractures with a headless compression screw is a viable treatment modality with satisfactory outcomes.


Sign in / Sign up

Export Citation Format

Share Document