scholarly journals Proposal of a Device Detecting Two Dimensional Coordinates Using PSD Sensor and Ultrasonic Sensor

Author(s):  
Yuya Kawahara ◽  
Ryuichi Udo ◽  
Shiyuan Yang
2014 ◽  
Vol 609-610 ◽  
pp. 1094-1099
Author(s):  
Yuan Yuan Shan ◽  
Ming Qin ◽  
Sheng Qi Chen

A two-dimensional position sensitive detecting sensor (PSD) based on avalanche breakdown is introduced in this paper. The structure of the sensor is designed under the assumption that the breakdown of the PN junction in the sensor occurs at the bottom of the PN junction. The breakdown structure and characteristics of the sensor are simulated by Medici software and the doping structure and process conditions are calculated by Tsuprem4 software. By using COMSOL Multiphysics, we obtained current allocation of the straight and right angle type electrodes, which is corresponding to the optimal structure. In simulation, the root mean square error of the rectangular-shaped electrode and the straight line-shaped electrode are 0.198, 0.145 respectively. Experiment results show that in the 50% photosensitive area with the center as the origin, the rectangular-shaped electrode error is much smaller than a straight line-shaped electrode and fits in to linear relationship better. But the error of the angle the boundary of the electrode is significantly worse than the line-shaped electrode.


Sensors ◽  
2015 ◽  
Vol 15 (10) ◽  
pp. 26353-26367
Author(s):  
Changyuan Zhai ◽  
Chunjiang Zhao ◽  
Xiu Wang ◽  
Ning Wang ◽  
Wei Zou ◽  
...  

Sensors ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 9000-9021 ◽  
Author(s):  
Jun Liu ◽  
Jiuqiang Han ◽  
Hongqiang Lv ◽  
Bing Li

2008 ◽  
Vol 39 (10) ◽  
pp. 1195-1199 ◽  
Author(s):  
Dongwoo Han ◽  
Sunghyun Kim ◽  
Sekwang Park

1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Sign in / Sign up

Export Citation Format

Share Document