Instrumentation For Quantitative Microscopy

Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.

2018 ◽  
Vol 75 (7) ◽  
pp. 2157-2174 ◽  
Author(s):  
Konstantinos Menelaou ◽  
M. K. Yau ◽  
Tsz-Kin Lai

Abstract It is known that concentric eyewalls can influence tropical cyclone (TC) intensity. However, they can also influence TC track. Observations indicate that TCs with concentric eyewalls are often accompanied by wobbling of the inner eyewall, a motion that gives rise to cycloidal tracks. Currently, there is no general consensus of what might constitute the dominant triggering mechanism of these wobbles. In this paper we revisit the fundamentals. The control case constitutes a TC with symmetric concentric eyewalls embedded in a quiescent environment. Two sets of experiments are conducted: one using a two-dimensional nondivergent nonlinear model and the other using a three-dimensional nonlinear model. It is found that when the system is two-dimensional, no wobbling of the inner eyewall is triggered. On the other hand, when the third dimension is introduced, an amplifying wobble is evident. This result contradicts the previous suggestion that wobbles occur only in asymmetric concentric eyewalls. It also contradicts the suggestion that environmental wind shear can be the main trigger. Examination of the dynamics along with complementary linear eigenmode analysis revealed the triggering mechanism to be the excitation of a three-dimensional exponentially growing azimuthal wavenumber-1 instability. This instability is induced by the coupling of two baroclinic vortex Rossby waves across the moat region. Additional sensitivity analyses involving reasonable modifications to vortex shape parameters, perturbation vertical length scale, and Rossby number reveal that this instability can be systematically the most excited. The growth rates are shown to peak for perturbations characterized by realistic vertical length scales, suggesting that this mechanism can be potentially relevant to actual TCs.


2014 ◽  
Vol 15 (1) ◽  
pp. 3-30 ◽  
Author(s):  
Antonio Gracia ◽  
Santiago González ◽  
Víctor Robles ◽  
Ernestina Menasalvas ◽  
Tatiana von Landesberger

Most visualization techniques have traditionally used two-dimensional, instead of three-dimensional representations to visualize multidimensional and multivariate data. In this article, a way to demonstrate the underlying superiority of three-dimensional, with respect to two-dimensional, representation is proposed. Specifically, it is based on the inevitable quality degradation produced when reducing the data dimensionality. The problem is tackled from two different approaches: a visual and an analytical approach. First, a set of statistical tests (point classification, distance perception, and outlier identification) using the two-dimensional and three-dimensional visualization are carried out on a group of 40 users. The results indicate that there is an improvement in the accuracy introduced by the inclusion of a third dimension; however, these results do not allow to obtain definitive conclusions on the superiority of three-dimensional representation. Therefore, in order to draw further conclusions, a deeper study based on an analytical approach is proposed. The aim is to quantify the real loss of quality produced when the data are visualized in two-dimensional and three-dimensional spaces, in relation to the original data dimensionality, to analyze the difference between them. To achieve this, a recently proposed methodology is used. The results obtained by the analytical approach reported that the loss of quality reaches significantly high values only when switching from three-dimensional to two-dimensional representation. The considerable quality degradation suffered in the two-dimensional visualization strongly suggests the suitability of the third dimension to visualize data.


2020 ◽  
Vol 172 ◽  
pp. 08005
Author(s):  
Jaanus Hallik ◽  
Targo Kalamees

A well-insulated, airtight and thermal bridge free building envelope is a key factor for nearly zero energy buildings (nZEB). However, increased insulation thickness and minimized air leakages increase the effect of thermal bridges on overall energy efficiency of the nZEBs. Although several more prominent linear thermal bridges are accounted for in the practice the three-dimensional heat flow through vast array of fixation elements, mounting brackets and other point thermal bridges are usually neglected due to time-consuming model preparation routine, lack of input data as well as high number of different thermal bridges that have to be assessed for a single project. In this study a new method was proposed for predicting three-dimensional heat flow and the point thermal transmittance of thermal bridges caused by full or partial penetration of the building envelope with metal elements with uniform geometry in third dimension based on multiple two-dimensional numerical heat flow calculations. A new parameter (equivalent length of thermal bridge) was defined which incorporates the effect of additional thermal transmittance in third dimension when multiplied by the difference of two thermal coupling coefficients derived for two-dimensional cross section. Multiple linear regression model was fitted on database with 102 cases and verified with separate case of window to wall connection incorporating metal penetration at fixation points. The proposed methodology can be useful in general practice where the design team lacks the skills or software tools for conducting detailed numerical analysis in three dimensions.


2011 ◽  
Vol 137 ◽  
pp. 1-6
Author(s):  
Qing Li ◽  
Xiao Xiang Yang

In this paper, the micromechanical finite element method based on Representative Volume Element has been applied to study and analyze the macro mechanical properties of the carbon black filled rubber composites by using two-dimensional plane stress simulations and three-dimensional axisymmetric simulations under uniaxial compression respectively. The dependence of the macroscopic stress-strain behavior and the effective elastic modulus of the composites, on particle shape, particle area/volume fraction and particle stiffness has been investigated and discussed. Additionally, the simulation results of the two-dimensional plane stress model and the three-dimensional axisymmetric model are evaluated and compared with the experimental data, which shows that the two-dimensional plane stress simulations generate poor predictions on the mechanical behavior of the carbon black particle reinforced rubber composites, while the three-dimensional axisymmetric simulations appear to give a better prediction.


2017 ◽  
Vol 14 (135) ◽  
pp. 20170635 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
K. R. Daly ◽  
G. F. Clough ◽  
P. Schneider ◽  
T. Roose

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, especially for skeletal muscle during exercise. Traditionally, microvascular oxygen supply capability is assessed by the analysis of morphological measures on transverse cross-sections of muscle, e.g. capillary density or capillary-to-fibre ratio. In this work, we investigate the relationship between microvascular structure and muscle tissue oxygenation in mice. Phase contrast imaging was performed using synchrotron radiation computed tomography (SR CT) to visualize red blood cells (RBCs) within the microvasculature in mouse soleus muscle. Image-based mathematical modelling of the oxygen diffusion from the RBCs into the muscle tissue was subsequently performed, as well as a morphometric analysis of the microvasculature. The mean tissue oxygenation was then compared with the morphological measures of the microvasculature. RBC volume fraction and spacing (mean distance of any point in tissue to the closest RBC) emerged as the best predictors for muscle tissue oxygenation, followed by length density (summed RBC length over muscle volume). The two-dimensional measures of capillary density and capillary-to-fibre ratio ranked last. We, therefore, conclude that, in order to assess the states of health of muscle tissue, it is advisable to rely on three-dimensional morphological measures rather than on the traditional two-dimensional measures.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E247-E265 ◽  
Author(s):  
Paul W. J. Glover

Archie’s law has been the standard method for relating the conductivity of a clean reservoir rock to its porosity and the conductivity of its pore fluid for more than [Formula: see text]. However, it is applicable only when the matrix is nonconducting. A modified version that allows a conductive matrix was published in 2000. A generalized form of Archie’s law is studied for any number of phases for which the classical Archie’s law and modified Archie’s law for two phases are special cases. The generalized Archie’s law contains a phase conductivity, a phase volume fraction, and phase exponent for each of its [Formula: see text] phases. The connectedness of each of the phases is considered, and the principle of conservation of connectedness in a three-dimensional multiphase mixture is introduced. It is confirmed that the general law is formally the same as the classical Archie’s law and modified Archie’s law for one and two conducting phases, respectively. The classical second Archie’s law is compared with the generalized law, which leads to the definition of a saturation exponent for each phase. This process has enabled the derivation of relationships between the phase exponents and saturation exponents for each phase. The relationship between percolation theory and the generalized model is also considered. The generalized law is examined in detail for two and three phases and semiquantitatively for four phases. Unfortunately, the law in its most general form is very difficult to prove experimentally. Instead, numerical modeling in three dimensions is carried out to demonstrate that it behaves well for a system consisting of four interacting conducting phases.


2021 ◽  
Author(s):  
Takashi Morita ◽  
Aru Toyoda ◽  
Seitaro Aisu ◽  
Naoko Suda-Hashimoto ◽  
Akihisa Kaneko ◽  
...  

One of the goals in animal socioecology is to understand the functions and dynamics of group living. While observations of free-ranging animals are a crucial source of information, an experimental investigation that manipulates the size or composition, or both, of animal groups in captivity can also bring complementary contributions to the research inquiry. When paired with an automatic data collection by biologging technology, experimental studies on captive animals also allow for big data analyses based on recent machine learning techniques. As an initial exploration of this research paradigm, the present study inquired to what extent isolation of captive Japanese macaques (Macaca fuscata) changed their movement patterns. Using three-dimensional location trajectories of the macaques that were systematically collected via Bluetooth Low Energy beacons and a deep neural network, we estimated the identifiability of whether a macaque was behaving in isolation or in group. We found that the neural network identified the isolation vs. in-group conditions with more than 90% accuracy from a five-minute location trajectory, suggesting that the isolation caused notable changes from the canonical group-living behaviors. In addition, the isolation made each individual more identifiable from one another based on their location trajectories.


2019 ◽  
Vol 963 ◽  
pp. 5-9 ◽  
Author(s):  
Michael Salamon ◽  
Matthias Arzig ◽  
Norman Uhlmann ◽  
Peter J. Wellmann

Computed Tomography is becoming a valuable method for the in-situ monitoring of vapor grown silicon carbide single crystals [1]. Already the two-dimensional X-ray radiography has shown the potential of surveilling the growth process [2] and its characteristic features like the evolution of the facet, the crystal volume or the source material structure from one imaging plane. Even though the demands on imaging capability of the applied X-ray components used for a tomographic analysis are higher than for two-dimensional imaging, the extension of this method to the third dimension is highly beneficial. It allows investigating the full geometry and three-dimensional location of the features and by this provides a more accurate analysis. In this contribution we present the physical characteristics and the latest advances of our technique for the visualization of facets.


2009 ◽  
Vol 8 (2) ◽  
pp. 107-119 ◽  
Author(s):  
Jens von Pilgrim ◽  
Kristian Duske ◽  
Paul McIntosh

In this paper we present the Eclipse project GEF3D. It is a framework for three-dimensional (3D) editors and editors, based on the widely used two-dimensional (2D) graphical editing framework Eclipse Graphical Editing Framework (GEF). It enhances this framework, enabling programmers to easily implement 3D editors. As an Eclipse plugin GEF3D is seamlessly integrated into the Eclipse integrated development environment, allowing developers to work with one tool for developing and visualizing their software in 3D. The third dimension enables the visualization of more complex relationships than provided by existing two-dimensional representations. In this paper we explain the architecture and certain design patterns of GEF3D in order to give researchers and developers interested in 3D software visualization an overview of how to use GEF3D and the features provided by the framework. We present the results of a usability evaluation, show how GEF3D is applied to embed an existing 2D editor into a 3D editor, and discuss performance issues.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Guihui Ma ◽  
Fu Chen ◽  
Jianyang Yu ◽  
Huaping Liu

Pressure-equalizing film is a slice of air layer attached to vehicle exterior with nearly uniform inside pressure, similar to ventilated cavity in composition; it is generated through exhaust process of the inside air chamber as vehicle emerges from deep water, and can reduce the lateral force and pitching moment that vertical launched underwater vehicle suffered. In this work, the emerging process of vehicle from water with pressure-equalizing exhaust was numerically calculated to investigate the evolution and flow characteristics of the generated pressure-equalizing film along its surface. Results indicated that during the whole exhaust process, the film can be obviously classified into different sections according to the distribution of phase volume fraction or pressure. The exhaust velocity ratio and flow rate from vehicle interior chamber were also found to increase as vehicle moves. In the analysis of flow structures, vortex structures such as the horseshoe vortex, “detour-separation” vortex, and counter-rotating vortex pair (CVP) can be figured out in the region of the exhaust hole. Under the effect of re-entrant jet, water around the film tail would be entrained upstream then enter the surface film to mix with the pressure-equalizing air. It leads to the happening of the three-dimensional (3D) wall vortex in the flow field.


Sign in / Sign up

Export Citation Format

Share Document