Evaluation of Genetic Diversity and Analysis of Gene Effects Controlling Some Traits in Garden Pea = تقييم التنوع الوراثي وتحليل الفعل الجيني المتحكم في بعض الصفات في نبات البسلة

2017 ◽  
Vol 21 (6) ◽  
pp. 903-929
Author(s):  
Dalia M. T. Nassef ◽  
B. E. S. Abd El-Fatah
Author(s):  
Bhallan Singh Sekhon ◽  
Akhilesh Sharma ◽  
Viveka Katoch . ◽  
Rakesh K. Kapila ◽  
V. K. Sood

An intraspecific hybrid breeding program involving six crosses, Palam Sumool (PS) × Palam Priya, PS × Pb-89, PS × Azad P-1, PS × Palam Triloki and VRPMR10 × Sugar Giant, Green Pearl × DPP-9411 was initiated in 2006 onwards followed by pedigree selection, resulted in isolation of 45 genotypes with desirable attributes. These progenies along with five recommended varieties were evaluated during 2014-15 to assess degree of divergence. A considerable genetic diversity was observed among genotypes, dispersed in 18 diverse clusters. Of these, 17 were monogenotypic while cluster I had maximum genotypes. Internodal length contributed maximum towards total genetic divergence followed by nodes per plant, protein content and average pod weight. Superior performing genotypes viz., ‘DPP-2011-SP-7’, ‘DPP-2011-SP-17’, and ‘DPP-2011-SP-24’ from cluster I and ‘DPP-2011-SP-6’, ‘DPP-2011-SP-22’ ‘DPPMR-09-1’, ‘DPPMR-09-2’, ‘DPP-2011-SN-5’ and ‘Palam Triloki’ from monogenotypic clusters offer promise for their direct use as varieties and as potential parents in future breeding programmes.


Author(s):  
Bharti Thakur ◽  
Susheel Sharma ◽  
Isha Sharma ◽  
Prachi Sharma ◽  
Deepika . ◽  
...  

Genetic diversity among 54 genotypes of field and garden pea of India were studied using 30 RAPD primers. A total of 168 amplicons were scored, of which 154 were polymorphic revealing 89.3% of polymophism. Out of 30 RAPD primers tested, 22 primers produced clear and reproducible bands. The number of products generated by these primers ranged from 04 to 14 with primer OPU-17 giving maximum (14) and primer OPC-08 giving minimum number of amplicons (04). Genetic similarity estimates based on the binomial data using Jaccard’s coefficient ranged from 0.34 (Kaza-2/IC-218991) to 0.89 (IC-209118/IC-209123) with an average similarity index of 0.54 exhibiting considerable diversity among the pea genotypes studied. The dendrogram showed clear pattern of clustering according to the source of germplasm. This study indicated that Himalayan region germplasm exhibited higher diversity.


2021 ◽  
Vol 21 (No.1) ◽  
Author(s):  
Max Mariz ◽  
Reham Gibely ◽  
Abdelmoghny AM

The aim of this study was to investigate the relationship between specific combining ability, genetic diversity of parents and heterosis over better parent effects. This research, having eighteen F1 crosses derived from crossing between six lines and three testers, was conducted in order to estimate combining ability, to determine the nature of gene action and heterosis for yield and fiber quality traits and to detect the appropriate crosses for cotton breeding program. The experiment was conducted on randomized complete block design with three replications. The analyses of variance showed significant differences among the genotypes, parents (lines and testers) and crosses for all the studied traits. Estimates of both general and specific combining ability effects were significant for most traits, indicating the importance of both additive and non-additive gene effects for these traits. While, specific was higher than general combining ability variances, for all traits, showing non-additive gene action controlling and therefore, heterosis breeding may be rewarding. The heterosis value varied from cross to cross and from trait to trait. This dissimilarity coefficient was ranged from 3.234 between Giza 85 and Giza 80 to 71.002 between Giza 96 and 10229. Association between heterosis over better parent and specific combining ability was positive and significant for all the studied traits except lint yield / plant. No correlations were found between SCA and GD for all the studied traits. Similarly, heterosis effects was negatively significantly correlated with GD only in the case of boll weight, lint yield / plant and uniformity ratio %, while showed positive and significant correlation for fiber strength and micronaire value. Four crosses showed both positive and significant heterosis and specific combining ability for most yield traits. The parents of these crosses belong to different clusters. Crossing diverse parents could produce high heterotic performance in hybri


Genetika ◽  
2014 ◽  
Vol 46 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Mehrzad Allhgholipour ◽  
Ezatollah Farshdfar ◽  
Babak Rabiei

A total of 52 rice SSR markers well distributed on 12 chromosomes were used to characterize and assess the genetic diversity among ninety four rice genotypes. The total number of polymorphic alleles was 361 alleles with the average of 5.86 alleles per SSR locus. The study revealed that some markers such as RM276 and RM5642 on chromosome 6 and RM14 and RM1 on chromosome 1 have more than 9 observed alleles compared to other primers like RM16, RM207, RM208 and RM317 with 3-4 alleles. The highest and lowest PIC values were observed for primers RM276 (0.892 and RM208 (0.423) respectively. Using Shannon?s diversity index, a mean genetic diversity of 1.641 was obtained from the analysis, indicating a high level of genetic variation among these cultivars. Cluster analysis using the complete linkage method based on jaccard similarity coefficient revealed that all genotypes were classified to nine clusters at genetic similarity level of 0.010.75, which contained 12, 16, 2, 18, 3, 6, 16, 10 and 11 varieties, respectively. Results of discriminant analysis showed that the nine cluster groups were confirmed at high levels of correct percent (96.8) and revealed true differences among these clusters. As a final result from this study, we selected eight cultivars from different cluster including Daylamani, Tarom mohali (landrace rice cultivars), RI1843046, Back cross line, RI184472, RI184421 (promising cultivars), Line 23 and IR50 (IRRI lines) as parents. All of the selected cultivars will be arranged in complete diallel design to obtain combining abilities, gene effects and heterosis for each important morphology and physico-chemical characters.


Author(s):  
Kumari Shiwani ◽  
Akhilesh Sharma

Background: The choice of appropriate breeding method for improvement of traits depends largely on gene action. Hence, an understanding of the inheritance of quantitative traits is essential to develop an efficient breeding strategy.Methods: Twelve generations of three inter-varietal crosses involving four diverse parents of garden pea were studied for biochemical traits and powdery mildew disease severity to analyze the nature of gene effects by using generation mean anaylsis.Result: Duplicate type of epistasis was observed for protein content in all or one or other crosses. In most cases, the presences of linkage among interacting genes or higher order interactions at several loci were involved. Non-fixable gene effects were many times higher than fixable one in all the crosses indicating a major role non-additive gene effects in the inheritance of these traits. The type of gene effects along with presence of non-allelic interactions suggested the adoption of population improvement methods to break undesirable linkages through recombination. The other alternative can be to defer selection in the later generations by advancing segregating populations through bulk pedigree or SSD methods with one or two inter-matings like recurrent selection. Based on pod characteristics and powdery mildew disease severity203 single plant progenies were isolated over the generations of three crosses along with bulk seed following SSD and bulk method to isolate transgressive segregants.


Author(s):  
S.K. Sanwal ◽  
Hari Kesh ◽  
Jyoti Devi ◽  
B. Singh

Background: Garden pea is a cool season vegetable crop cultivated extensively throughout the world. Besides nutritional quality it also boosts soils through the fixation of atmospheric nitrogen. The most important task of pea breeding is to develop varieties with high and stable production, different maturity types and resistance against biotic and abiotic stresses. To fulfil these objectives, analysis of genetic diversity is the prerequisite to choose genetically diverse parents for a successful hybridization program and to know the source of genes for a particular trait within the available germplasm. Methods: A study was conducted at ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi during 2015, using principle component analysis, correlation analysis and stepwise regression analysis approaches to assess the genetic diversity present in 160 pea genotypes for the identification of diverse parents for use in crop improvement. Result: Based on the phenotypic data, three superior genotypes VRPD-2, VRPR-15 and VRP-292 were identified on the basis of pod yield, number of pods per plant, ten pod weight, pod length and number of seeds per pod whereas three other genotypes VRPE-45-1, VRPE-55 and VRPE-36 were found early flowering. Principle Component Analysis revealed that first four principle components contributed to 85% of the total variation so these four were given due importance for further explanation. Stepwise multiple regression analysis revealed that number of pods per plant, ten pod weight and number of internode for first pod were the best predictors of pod yield per plant.


2010 ◽  
Vol 44 (5) ◽  
pp. 36
Author(s):  
Mary Ann Moon
Keyword(s):  

1996 ◽  
Vol 97 (3) ◽  
pp. 463-468 ◽  
Author(s):  
V. Agustini ◽  
T. McIntosh ◽  
L. Malek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document