Epigenetic changes in frontal lobe of the brain with pre- and perinatal exposure to flame retardant BDE-47

2013 ◽  
Vol 2013 (1) ◽  
pp. 5215
Author(s):  
Hyang-Min Byun ◽  
Larissa Takser ◽  
Maria Chiara Frisardi ◽  
Elena Colicino ◽  
Andrea A Baccarelli
Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


2019 ◽  
Author(s):  
Zeus Gracia-Tabuenca ◽  
Juan Carlos Díaz-Patiño ◽  
Isaac Arelio ◽  
Sarael Alcauter

AbstractThe functional organization of the brain network (connectome) has been widely studied as a graph; however, methodological issues may affect the results, such as the brain parcellation scheme or the selection of a proper threshold value. Instead of exploring the brain in terms of a static connectivity threshold, this work explores its algebraic topology as a function of the filtration value (i.e., the connectivity threshold), a process termed the Rips filtration in Topological Data Analysis. Specifically, we characterized the transition from all nodes being isolated to being connected into a single component as a function of the filtration value, in a public dataset of children with attention-deficit/hyperactivity disorder (ADHD) and typically developing children. Results were highly congruent when using four different brain segmentations (atlases), and exhibited significant differences for the brain topology of children with ADHD, both at the whole brain network and at the functional sub-network levels, particularly involving the frontal lobe and the default mode network. Therefore, this approach may contribute to identify the neurophysio-pathology of ADHD, reducing the bias of connectomics-related methods.HighlightsTopological Data Analysis was implemented in functional connectomes.Betti curves were assessed based on the area under the curve, slope and kurtosis.The explored variables were robust along four different brain atlases.ADHD showed lower areas, suggesting decreased functional segregation.Frontal and default mode networks showed the greatest differences between groups.Graphical Abstract


Author(s):  
Eduardo G. Nieva ◽  
María F. Peralta ◽  
Diego A. Beltramone

In the present work, the authors use the Brain Computer Interface technology to allow the dependent persons the utilization of the basic elements of their house, such as turning on and turning off lamps, rolling up and down a roller shutter, or switching on the heating system. For doing this, it is necessary to automate these devices and to centralize its managing in a platform, which constitutes a domotics system. In order to achieve this, the authors have used the MindWave NeuroSky ® commercial device. It is affordable, portable, and wireless, and senses and delivers the computer the electroencephalographic signals produced in the frontal lobe and the levels of attention, relaxation, and blinking to the computer. In order to determine the efficiency of the obtained signals a test software was designed, which verified the operation´s device with different persons. The authors conclude that the easiest way to control the attention levels is concentrating on a certain point, and the way to control the relaxation levels is by closing the eyes. As a second step, the authors develop a software that takes the signal from the EEG (Electro Encephalo Graphy) sensor, processes it, and sends signals via USB to an Arduino board, which is associated with electronics that complies the different tasks. The user chooses the action by managing the attention levels. When they are higher than a particular threshold value, the action is executed. In order to disable this action, the user must lower the threshold level and overcome it again. This is the simplest and fastest way to handle, but it brings several problems: if the user concentrates for any other reason and this signal exceeds the threshold, it causes the activation of an involuntary action. To solve this problem, the authors use a three variables combination that can become independent of each other thru training properly. These variables are attention, meditation, and blink. When you comply with the three simultaneous previously established conditions, the action is executed, and when they return to fulfill the conditions, the action is deactivated. The software also has the feature of personalizing its conditions, so it can be best for any user, even a novice one.


2021 ◽  
pp. 89-102
Author(s):  
Mark Selikowitz

ADHD is usually due to a depletion of certain chemical messengers in the front part of the brain. The major cause of this depletion relates to a number of defective genes. ADHD shares some of its causative genes with certain other conditions, so having ADHD makes also having these other conditions more likely. To help many children with learning and behavioural difficulties, we need to treat an impairment in their brain function. This chapter discusses impairment in brain function as a cause of ADHD, including executive function deficits, frontal lobe underactivity, neurotransmitter depletion, gene defects, and non-genetic factors. It also describes the mechanism of comorbidity.


2020 ◽  
Vol 13 (8) ◽  
Author(s):  
Kasra Moazzami ◽  
Matthew T. Wittbrodt ◽  
Mhmtjamil Alkhalaf ◽  
Bruno B. Lima ◽  
Jonathon A. Nye ◽  
...  

Background: The inferior frontal lobe is an important area of the brain involved in the stress response, and higher activation with acute mental stress may indicate a more severe stress reaction. However, it is unclear if activation of this region with stress correlates with angina in individuals with coronary artery disease. Methods: Individuals with stable coronary artery disease underwent acute mental stress testing using a series of standardized speech/arithmetic stressors in conjunction with high resolution positron emission tomography imaging of the brain. Blood flow to the inferior frontal lobe was evaluated as a ratio compared with whole brain flow for each scan. Angina was assessed with the Seattle Angina Questionnaire’s angina frequency subscale at baseline and 2 years follow-up. Results: We analyzed 148 individuals with coronary artery disease (mean age [SD] 62 [8] years; 69% male, and 35.8% Black). For every doubling in the inferior frontal lobe activation, angina frequency was increased by 13.7 units at baseline ( , 13.7 [95% CI, 6.3–21.7]; P =0.008) and 11.6 units during follow-up ( , 11.6 [95% CI, 4.1–19.2]; P =0.01) in a model adjusted for baseline demographics. Mental stress-induced ischemia and activation of other brain pain processing regions (thalamus, insula, and amygdala) accounted for 40.0% and 13.1% of the total effect of inferior frontal lobe activation on angina severity, respectively. Conclusions: Inferior frontal lobe activation with mental stress is independently associated with angina at baseline and during follow-up. Mental stress-induced ischemia and other pain processing brain regions may play a contributory role.


BMJ ◽  
1928 ◽  
Vol 1 (3520) ◽  
pp. 1058-1061 ◽  
Author(s):  
J. P. Martin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document