scholarly journals Role of Cathepsin B as Prorenin Processing Enzyme in Human Kidney.

1995 ◽  
Vol 18 (2) ◽  
pp. 131-136 ◽  
Author(s):  
Tatsuo Shinagawa ◽  
Kazuhisa Nakayama ◽  
Yasuo Uchiyama ◽  
Eiki Kominami ◽  
Yutaka Doi ◽  
...  
Hypertension ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 514-517 ◽  
Author(s):  
Francisco A.R. Neves ◽  
Keith G. Duncan ◽  
John D. Baxter

2014 ◽  
Vol 64 (16) ◽  
pp. C52-C53
Author(s):  
Wu Qingqing ◽  
Man Xu ◽  
Yuan Yuan ◽  
Fang-Fang Li ◽  
Jia Dai ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2018 ◽  
Vol 104 (6) ◽  
pp. 1229-1239 ◽  
Author(s):  
Youssra Haouami ◽  
Tarak Dhaouadi ◽  
Imen Sfar ◽  
Mongi Bacha ◽  
Tahar Gargah ◽  
...  

1981 ◽  
Vol 196 (1) ◽  
pp. 41-48 ◽  
Author(s):  
S E Knowles ◽  
F J Ballard ◽  
G Livesey ◽  
K E Williams

1. The effects of leupeptin and other microbial proteinase inhibitors were measured in rat yolk sacs on the uptake and degradation of formaldehyde-denatured 125I-labelled bovine serum albumin as well as on the degradation of 3H-labelled endogenous protein. 2. Leupeptin, at concentrations between 1 and 100 micrograms/ml, inhibits the degradation of added albumin without affecting pinocytic uptake. Accordingly large amounts of undegraded albumin accumulate within the tissue. 3. Removal of leupeptin produces a rapid recovery of the capacity to degrade albumin. 4. Endogenous protein degradation is rapidly inhibited by leupeptin, but to a far lesser extent than the breakdown of albumin. However, the inhibition is only slightly reversed on removal of leupeptin. 5. Degradation of both albumin and endogenous protein in intact yolk sacs is inhibited by the microbial proteinase inhibitors in the order: leupeptin greater than antipain greater than chymostatin; elastatinal, pepstatin and bestatin are ineffective. 6. Similar results are found when albumin is incubated in yolk-sac homogenates at pH 4 with the inhibitors. 7. The marked inhibitory effects of leupeptin, antipain and chymostatin suggest that cathepsin B and possibly cathepsin L participate in the degradation of 125I-labelled albumin in yolk sacs. By comparison, the smaller inhibitory effects of the proteinase inhibitors on endogenous protein breakdown imply a minor role of lysosomal cathepsins in this process.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Krzysztof M. Krawczyk ◽  
Jennifer Hansson ◽  
Helén Nilsson ◽  
Katarzyna K. Krawczyk ◽  
Karl Swärd ◽  
...  

Author(s):  
Jürgen E. Scherberich ◽  
Gunter Wolf ◽  
Claudia Stuckhardt ◽  
Peter Kugler ◽  
Wilhelm Schoeppe
Keyword(s):  

Author(s):  
Fateme Tavakoli Far ◽  
◽  
Ehsan Amiri-Ardekani ◽  

Since December 2019, a novel beta coronavirus has spread around the world. This virus can cause severe acute respiratory syndrome (SARS). In this study, we reviewed proteases of SARS-CoV-2 based on related articles published in journals indexed by Scopus, PubMed, and Google Scholar from December 2019 to April 2020. Based on this study, we can claim that this coronavirus has about 76% genotype similarity to SARS coronavirus (SARS-CoV). Also, similarities between these two viruses have been found in the mechanism of entry into host cells and pathogenicity. ACE 2, the angiotensin convertase enzyme 2, plays a role in the Renin-Angiotensin-Aldosterone system (RAAS) and blood pressure regulation. Some mechanisms have been reported for the role of ACE 2 in the pathogenicity of SARS-CoV-2. For example, the interaction between the ACE 2 receptor and spike protein mediated by TMPRSS2, Cathepsin B/L, and other enzymes is responsible for the entry of the virus into human cells and pathogenicity. Some host cell endosomal enzymes are necessary to cleavage coronavirus spike protein and cause binding to their common receptor. So, we conclude that molecules like antibodies or small molecules like ACE 2 antagonists and soluble ACE 2 can be used as a good therapeutic candidate to prevent SARS-CoV-2.


2010 ◽  
Vol 391 (12) ◽  
Author(s):  
M. David Percival ◽  
Sylvie Toulmond ◽  
Nathalie Coulombe ◽  
Wanda Cromlish ◽  
Sylvie Desmarais ◽  
...  

Abstract Renin is the first enzyme in the renin-angiotensin-aldosterone system which is the principal regulator of blood pressure and hydroelectrolyte balance. Previous studies suggest that cathepsin B is the activator of the prorenin zymogen. Here, we show no difference in plasma renin activity, or mean arterial blood pressure between wild-type and cathepsin B knockout mice. To account for potential gene compensation, a potent, selective, reversible cathepsin B inhibitor was developed to determine the role of cathepsin B on prorenin processing in rats. Pharmacological inhibition of cathepsin B in spontaneously hypertensive and double transgenic rats did not result in a reduction in renal mature renin protein levels or plasma renin activity. We conclude that cathepsin B does not play a significant role in this process in rodents.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Anna Cyganek ◽  
Aleksandra Wyczalkowska-Tomasik ◽  
Patrycja Jarmuzek ◽  
Barbara Grzechocinska ◽  
Zoulikha Jabiry-Zieniewicz ◽  
...  

Objectives. The aim of the study was to evaluate the activity of cathepsin B, collagenases, trypsin, and plasmin and concentration of cystatin C in serum of healthy pregnant women in peripartum period.Study Design. The study group included 45 women in uncomplicated pregnancies. Blood samples were collected in four time points. Enzyme activity was measured by spectrofluorometric method. The level of cystatin C was measured using immunonephelometric method.Results. Mean activity of cathepsin B and the level of serum cystatin C were significantly higher in the study group. Collagenase activity was significantly lower in the study group than the control group. No differences in collagenase, plasmin, and trypsin activity on each day of the peripartum period were found.Conclusion. High activity of cathepsin B and increased level of cystatin C are typical for women in late pregnancy. Those levels significantly decrease after delivery which can be associated with potential role of those markers in placental separation. The insignificant changes of cystatin C level in the peripartum period seem to exclude the possibility of using cystatin C as a marker for renal insufficiency in the peripartum period but additional research is necessary to investigate the matter further.


Sign in / Sign up

Export Citation Format

Share Document