scholarly journals The cell wall component lipoteichoic acid of Staphylococcus aureus induces chemokine gene expression in bovine mammary epithelial cells

2016 ◽  
Vol 78 (9) ◽  
pp. 1505-1510 ◽  
Author(s):  
Yoshio KIKU ◽  
Yuya NAGASAWA ◽  
Fuyuko TANABE ◽  
Kazue SUGAWARA ◽  
Atsushi WATANABE ◽  
...  
2019 ◽  
Vol 131 ◽  
pp. 15-21
Author(s):  
Minerva Frutis-Murillo ◽  
Marcelo Alejandro Sandoval-Carrillo ◽  
Nayeli Alva-Murillo ◽  
Alejandra Ochoa-Zarzosa ◽  
Joel E. López-Meza

2012 ◽  
Vol 57 (No. 10) ◽  
pp. 469-480 ◽  
Author(s):  
T. Sigl ◽  
H.H.D. Meyer ◽  
S. Wiedemann

&nbsp;The objective of the present study was to refine a previously developed method to isolate primary bovine mammary epithelial cells (pBMEC) from fresh milk. Using this method, it was tested whether the number of pBMEC and the relation of recovered pBMEC to total somatic cell count vary within the individual lactation stages. Furthermore, the expression levels of the milk protein genes during the first twenty weeks of lactation were determined by quantitative PCR method. A total number of 152 morning milk samples were obtained from twenty-four Holstein-Friesian cows during the first 20 weeks of lactation (day 8, 15, 26, 43, 57, 113, and 141 postpartum). Numbers of extracted pBMEC were consistent at all time-points (1.1 &plusmn; 0.06 to 1.4 &plusmn; 0.03 &times;10<sup>3</sup>/ml) and an average value of RNA integrity number (RIN) was 6.3 &plusmn; 0.3. Percentage of pBMEC in relation to total milk cells (2.0 &plusmn; 0.2 to 6.7 &plusmn; 1.0%) correlated with milk yield. Expression patterns of the casein genes alpha (&alpha;)<sub>S1</sub>, (&alpha;)<sub>S2</sub>, beta (&beta;), and kappa (&kappa;) (CSN1S1, CSN1S2, CSN2, CSN3, respectively) and the whey protein genes &alpha;-lactalbumin (LALBA) and progestagen-associated endometrial protein (PAEP; known as &beta;-lactoglobulin) were shown to be comparable, i.e. transcripts of all six milk protein genes were found to peak during the first two weeks of lactation and to decline continuously towards mid lactation. However, mRNA levels were different among genes with CSN3 showing the highest and LALBA the lowest abundance. We hypothesized that milk protein gene expression has a pivotal effect on milk protein composition with no influence on milk protein concentration. This paper is the first to describe milk protein gene expression during lactation in pBMEC collected in milk. Future studies will be needed to understand molecular mechanisms in pBMEC including regulation of expression and translation throughout lactation. &nbsp;


2020 ◽  
Vol 7 ◽  
Author(s):  
Marisol Báez-Magaña ◽  
Nayeli Alva-Murillo ◽  
Ivan Medina-Estrada ◽  
María Teresa Arceo-Martínez ◽  
Joel E. López-Meza ◽  
...  

2012 ◽  
Vol 79 (3) ◽  
pp. 877-885 ◽  
Author(s):  
Damien S. Bouchard ◽  
Lucie Rault ◽  
Nadia Berkova ◽  
Yves Le Loir ◽  
Sergine Even

ABSTRACTStaphylococcus aureusis a major pathogen that is responsible for mastitis in dairy herds.S. aureusmastitis is difficult to treat and prone to recurrence despite antibiotic treatment. The ability ofS. aureusto invade bovine mammary epithelial cells (bMEC) is evoked to explain this chronicity. One sustainable alternative to treat or prevent mastitis is the use of lactic acid bacteria (LAB) as mammary probiotics. In this study, we tested the ability ofLactobacillus caseistrains to prevent invasion of bMEC by twoS. aureusbovine strains, RF122 and Newbould305, which reproducibly induce acute and moderate mastitis, respectively.L. caseistrains affected adhesion and/or internalization ofS. aureusin a strain-dependent manner. Interestingly,L. caseiCIRM-BIA 667 reducedS. aureusNewbould305 and RF122 internalization by 60 to 80%, and this inhibition was confirmed for two otherL. caseistrains, including one isolated from bovine teat canal. The protective effect occurred without affecting bMEC morphology and viability. Once internalized, the fate ofS. aureuswas not affected byL. casei. It should be noted thatL. caseiwas internalized at a low rate but survived in bMEC cells with a better efficiency than that ofS. aureusRF122. Inhibition ofS. aureusadhesion was maintained with heat-killedL. casei, whereas contact between liveL. caseiandS. aureusor bMEC was required to preventS. aureusinternalization. This first study of the antagonism of LAB towardS. aureusin a mammary context opens avenues for the development of novel control strategies against this major pathogen.


Sign in / Sign up

Export Citation Format

Share Document