scholarly journals FORMATION OF A SOLIDARITY KITCHEN, USE OF POST-HARVEST LOSSES, AND FOOD SAFETY: ADVANCES AND CHALLENGES IN ADDRESSING SOCIAL VULNERABILITY

2017 ◽  
Vol 12 (4) ◽  
Author(s):  
Juçara Alvarindo Brito Soledade ◽  
Ryzia De Cassia Vieira Cardoso ◽  
Lara Conceição Campos Pena ◽  
Karla Vila Nova de Araújo Figueirêdo ◽  
Tereza Cristina De Oliveira E Oliveira
Agriculture ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Joycelyn Quansah ◽  
Cesar Escalante ◽  
Angela Kunadu ◽  
Firibu Saalia ◽  
Jinru Chen

Vegetable farming is the most practiced urban agriculture in Ghana. A previous study of our laboratory revealed poor microbial quality of, and presence of Salmonella on, leafy green vegetables grown or sold in Accra, Ghana. The aims of this study were to determine agricultural practices of urban vegetable farmers and the association between agricultural practices and microbial safety of vegetables produced. A survey was conducted among 102 farmers from 12 farming areas who produced exotic and indigenous leafy greens in Accra, Ghana to identify their farming practices. It was observed that water from waste drains pumped into shallow wells was used for irrigation by 70% of the farmers. Incompletely composted manure was commonly used (99%) in farming. Vegetables were usually harvested using bare hands (96%) and knives (73%) and transported mainly in sacks (94%) to market centers under non-refrigerated conditions. Over 60% of the farmers disagreed that the use of polluted irrigation water can contaminate vegetables or make consumers sick. According to the seemingly unrelated regression model, farmers with no formal education and less food safety knowledge and had been planting on their current farmlands for several years were likely to produced vegetables with higher fecal coliform and Enterococcus sp. counts compared to other farmers. Vegetables cultivated by farmers who disagreed that the use of contaminated water can make consumers sick were associated with the production of vegetables with high fecal coliform and Enterococcus sp. counts. Education and improved agricultural and post-harvest handling practices should be encouraged among vegetable producers in the area to improve food safety.


2017 ◽  
Vol 1 (4) ◽  
pp. 289-301 ◽  
Author(s):  
Kayla Murray ◽  
Fan Wu ◽  
John Shi ◽  
Sophia Jun Xue ◽  
Keith Warriner

2018 ◽  
Vol 48 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Anil Panghal ◽  
D.N. Yadav ◽  
Bhupender S. Khatkar ◽  
Himanshu Sharma ◽  
Vikas Kumar ◽  
...  

Purpose Fruits and vegetables, being good source of energy, health promoting and protecting compounds with unique taste and flavor, are attracting consumers since ages. These horticultural produces start deterioration just after harvest; therefore, their proper storage is must during transportation and storage to retain maximum quality parameters and for good market value. Best storage conditions are required to prevent growth of micro flora and to maintain the nutritional values of harvested produce. Retailers and processors in every corner of world want to move toward the cheaper ways to increase the shelf life and texture of horticultural crops for better consumer preference. The purpose of this paper is to make consumers and researchers aware about different post harvest malpractices in fresh fruits and vegetables. Design/methodology/approach Lot of chemicals like colors, artificial ripening agents, sweeteners and waxes are applied on surface of horticulture produce to siphon off money from consumers, and these have adverse health effects directly or indirectly. Various regulatory agencies have launched various programs, acts and laws for monitoring and avoiding such unhealthy ways. Regulatory bodies launched training programs also for the food handlers and consumers to ensure the food safety from farm to fork. Findings This paper will throw light on different malpractices followed by retailers to manipulate the quality which causes adverse health effects and to create consumer awareness regarding such malpractices. Originality/value The paper emphasizes on current malpractices followed by retailers to mislead the consumers about fruits’ and vegetable’ quality by using sweeteners, colors and other chemical. On prolonged consumption, such substances lead to major health issues such as attention disorder.


2021 ◽  
Vol 5 ◽  
Author(s):  
Yagmur Yegin ◽  
Keila L. Perez-Lewis ◽  
Shuhao Liu ◽  
Chris R. Kerth ◽  
Luis Cisneros-Zevallos ◽  
...  

Protecting fresh-packed produce microbiological safety against pre- and post-harvest microbial pathogen contamination requires innovative antimicrobial strategies. Although largely ignored in the scientific literature, there exists the potential for gross failure in food safety protection of fresh fruits and vegetables leading to opportunity for multiple produce contamination events to occur during production and post-harvest handling of food crops. The primary objective of this research was to determine the efficacy of plant-derived antimicrobial-loaded nanoparticles to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium on spinach leaf surfaces whilst simulating multiple pathogen contamination events (pre-harvest and post-harvest). Spinach samples were inoculated with a blend of E. coli O157:H7 and S. Typhimurium, each diluted to ~8.0 log10 CFU/mL. The inoculated samples were then submerged in solutions containing nanoparticles loaded with geraniol (GPN; 0.5 wt.% geraniol), unencapsulated geraniol (UG; 0.5 wt.%), or 200 ppm chlorine (HOCl; pH 7.0), with untreated samples serving for controls. Following antimicrobial treatment application, samples were collected for surviving pathogen enumeration or were placed under refrigeration (5°C) for up to 10 days, with periodic enumeration of pathogen loads. After 3 days of refrigerated storage, all samples were removed, aseptically opened and subjected to a second inoculation with both pathogens. Treatment of spinach surfaces with encapsulated geraniol reduced both pathogens to non-detectable numbers within 7 days of refrigerated storage, even with a second contamination event occurring 3 days after experiment initiation. Similar results were observed with the UG treatment, except that upon recontamination at day 3, a higher pathogen load was detected on UG-treated spinach vs. GPN-treated spinach. These data fill a research gap by providing a novel tool to reduce enteric bacterial pathogens on spinach surfaces despite multiple contamination events, a potential food safety risk for minimally processed edible produce.


Sign in / Sign up

Export Citation Format

Share Document