scholarly journals Shear Behavior of Joint The Partial Prestressed Concrete Beam-Column Reinforced Concrete of Ductile Frame Structure Building In a Scure Residents and for Settlement Environment

2015 ◽  
Vol 0 (1) ◽  
Author(s):  
Made D Astawa ◽  
IGP Raka ◽  
Tavio Tavio
1979 ◽  
Vol 6 (3) ◽  
pp. 343-354
Author(s):  
Marc Thenoz ◽  
Claude Bidaud

This paper presents the electronic computer programmes used for the design of standard bridge superstructures by the SETRA (Service d'Etudes techniques des Routes et Autoroutes) of the French Department of Public Works. There is one particular programme for each bridge type. Through these programmes, concrete widths and depths and steel reinforcement are calculated for reinforced concrete beam and slab bridges, and prestressing is designed for prestressed concrete beam and slab bridges.Since February 1, 1962, 11 000 bridges have been designed with these varied and general programmes, suitable for most standard road and freeway overpasses. [Journal translation]


2015 ◽  
Vol 744-746 ◽  
pp. 283-287
Author(s):  
Can Liu

Inner transverse prestressed bars were used to enhance the shear capacity of concrete beams in this paper, which can be used in transformer beams to reduce the sectional size. Two transversely prestressed one ordinary concrete beams were tested and calculated by finite element method, and the following conclusions can be drawn: (a)The shear capacity of transversely prestressed concrete beam increase rapidly with the increase of the prestressing force level, which means that prestressing force level has a great influence on the shear capacity of transversely prestressed concrete beam. (b) The transverse prestressing bars can efficiently enhance the anti-crack performance of the reinforced concrete beams.


2011 ◽  
Vol 105-107 ◽  
pp. 912-917
Author(s):  
Can Liu ◽  
Bo Wu ◽  
Kai Yan Xu

This paper presents a method that using inner transverse prestressing bars to enhance the shear capacity of concrete beams, which can be used in new transformer beams to decrease the sectional dimensions. Four transversely prestressed concrete beams and one ordinary reinforced concrete beam were tested. The nonlinear finite element method was applied to analyze them, parametric study was carried out to analyze the behavior of transversely prestressed concrete beam, and the following conclusions can be drawn: (a) With the increase of the prestressing force level, the shear capacity of transversely prestressed concrete beam increase rapidly, which means that prestressing force level has a significant effect to the shear capacity of transversely prestressed concrete beam. (b) If the area of transversely prestressing bars is almost same, the transverse bars with smaller diameter and smaller spacing can enhance shear capacity of transversely prestressed concrete beam more efficiently. (c) If steel plate of 100 mm×350 mm×16 mm being changed to steel padding of 100mm×100mm×16 mm the shear capacity of transversely prestressed concrete beam will decrease little. It means in the actual engineering the steel plate can be changed to steel padding, and then the amount of steel will be reduced.


2018 ◽  
Vol 4 (7) ◽  
pp. 1595
Author(s):  
Nibras Abbas Harbi ◽  
Amer F. Izzet

The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high temperature flame of 300, 500, and 700°C, and the remaining beams were left without burning as reference specimens. Then, the burned beams were cooled gradually by leaving them at an ambient lab condition, after which the specimens were loaded until failure to study the effect of temperature on the residual beams serviceability, to determine the ultimate load-carrying capacity of each specimen in comparison with unburned reference beam, and to find the limit of the temperature for a full composite section to remain composite. It was found that the exposure to fire temperature increased the camber of composite beam at all periods of the burning and cooling cycle as well as the residual camber, along with reduction in beam stiffness and the modulus of elasticity of concrete in addition to decrease in the load-carrying capacity.


Sign in / Sign up

Export Citation Format

Share Document