scholarly journals Effects of Pilot Injection Timing on The Engine Performance of A Diesel Dual Fuel Engine

2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Jose Da Silva ◽  
Dori Yuvenda ◽  
Bambang Sudarmanta
2021 ◽  
pp. 146808742199047
Author(s):  
Cheng Ma ◽  
Chong Yao ◽  
En-Zhe Song ◽  
Shun-Liang Ding

With the increasingly stringent environmental issues and regulations, there are higher requirements for improving engine performance and reducing pollution. Combining artificial neural network and particle swarm optimization algorithm to optimize the fuel consumption and emissions for micro-ignition dual-fuel engines. A model-based calibration scheme is maintained to reduce the number of experimental points by employing space-filling and V optimization design, to save the experimental cost and improve efficiency. The experimental data used to establish an RBF neural network prediction model that achieves a perfect mapping of engine input and output parameters. Controllable variables such as speed, torque, main injection timing, pilot injection timing, pilot injection quantity, rail pressure, excess air coefficient, and substitution rate limit parameters are input as neural networks. Subsequently, the combination of control parameters was optimized through PSO, thereby to achieve fuel consumption and emissions trade-off. Matching experiment results show actual emissions of NOx, THC, and CO decreased by 20.5%, 30.3%, and 43.1%, respectively, and the BSFC declined by an average of 2.1% contrasted with the original data. It achieves the optimum of emission and fuel consumption at the same time.


2020 ◽  
Vol 197 ◽  
pp. 06010
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In this paper, the effect of late injection on combustion and emission levels has been investigated on a single cylinder compression ignition engine operated in dual-fuel mode injecting methane along the intake duct and igniting it through a pilot fuel injected directly into the combustion chamber. During the tests, the amount of pilot fuel injected per cycle has been kept constant, while the amount of methane has been varied on three levels. Therefore, three levels of engine load have been tested, while speed has been kept constant equal to 1500rpm. Pilot injection pressure has been varied on three set points, namely 500, 1000 and 1500 bar. For each engine load and injection pressure, pilot injection timing has been swept on a very broad range of values, spanning from very advanced to very late values. The analysis of heat release rate indicates that MK-like conditions are established in dual-fuel mode with late pilot injection. In these conditions, pollutant species, and NOx levels in particular, are significantly reduced without penalization – and in several conditions with improvement – on fuel conversion efficiency.


2021 ◽  
Author(s):  
Yoichi Niki

Abstract NH3 has been investigated for its use as an alternative fuel including for use in internal combustion engines. In NH3 combustion, emissions of unburned NH3 with toxicity and N2O as a combustion product with high global warming potential (GWP) are important issues. However, few researchers have investigated NH3 and N2O emissions from NH3 assisted diesel engines operated using NH3–diesel dual fuel. We investigate a combustion strategy to reduce these emissions with a single-cylinder diesel engine mixed NH3 gas into the intake air. We found that an early diesel pilot injection reduced unburned NH3 and N2O emissions while HC and CO emissions increased. It was also reported that NH3 and diesel fuel work as low and high reactivity fuel for reactivity controlled compression ignition combustion (RCCI), respectively. Our previous study reports the aspects of RCCI on NH3–diesel dual fuel engine to some extent. The injection timing of diesel fuel and the quantity of NH3 govern the emissions and performance on RCCI combustion. These effects need to be investigated to manipulate the RCCI combustion and reduce emissions. This paper reports the efficiency and emissions for the diesel pilot injection timing sweep at various NH3 supply quantities and the effects of a split injection on the emissions and a combustion phase. In addition, we estimated the reduction in GHG emissions using a NH3–diesel dual fuel engine, which applied the early diesel pilot injection, compared with the diesel only operation, considering the N2O GWP.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1396
Author(s):  
Hao Guo ◽  
Song Zhou ◽  
Jiaxuan Zou ◽  
Majed Shreka

The global demand for clean fuels is increasing in order to meet the requirements of the International Maritime Organization (IMO) of 0.5% global Sulphur cap and Tier III emission limits. Natural gas has begun to be popularized on liquefied natural gas (LNG) ships because of its low cost and environment friendly. In large-bore marine engines, ignition with pilot fuel in the prechamber is a good way to reduce combustion variability and extend the lean-burn limit. However, the occurrence of knock limits the increase in power. Therefore, this paper investigates the effect of pilot fuel injection conditions on performance and knocking of a marine 2-stroke low-pressure dual-fuel (LP-DF) engine. The engine simulations were performed under different pilot fuel parameters. The results showed that the average in-cylinder temperature, the average in-cylinder pressure, and the NOx emissions gradually decreased with the delay of the pilot injection timing. Furthermore, the combustion situation gradually deteriorated as the pilot injection duration increased. A shorter pilot injection duration was beneficial to reduce NOx pollutant emissions. Moreover, the number of pilot injector orifices affected the ignition of pilot fuel and the flame propagation speed inside the combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document