Influence of Salt Stress on Different Pepper Genotypes: Ion Homeostasis, Antioxidant Defense, and Secondary Metabolites

2021 ◽  
Vol 9 (1) ◽  
pp. 14-20
Author(s):  
Sebnem Kusvuran ◽  
◽  
Sevinc Kiran ◽  
Ozlem Altuntas
Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Sayed Mohsin ◽  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Khursheda Parvin ◽  
Masayuki Fujita

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems.


2016 ◽  
Vol 22 (3) ◽  
pp. 291-306 ◽  
Author(s):  
Anisur Rahman ◽  
Md. Shahadat Hossain ◽  
Jubayer-Al Mahmud ◽  
Kamrun Nahar ◽  
Mirza Hasanuzzaman ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 70-83
Author(s):  
Mukund R. Shukla ◽  
Vikramjit S. Bajwa ◽  
Jose A. Freixas-Coutin ◽  
Praveen K Saxena

Salinity is a major environmental stress in agriculture with significantly detrimental effects on crop productivity. The development of strategies to enhance salinity stress tolerance in plants is essential to ensure crop production in saline environments. Melatonin (Mel) and serotonin (Ser) accumulate in response to environmental stresses and are presumed to play protective roles and improve growth of tissues during recovery. In this study, the effects of Mel and Ser were investigated in Arabidopsis under NaCl stress. Exogenous Mel (10 µM) and Ser (10 µM) treatment significantly increased fresh weight, lateral root number, and shoot height in A. thaliana seedlings exposed to NaCl stress (25 mM and 50 mM) compared to the non-treated control seedlings. In order to understand the role of these indoleamines in alleviating salt stress, we investigated the effects of Mel and Ser treatments on the expression of salt stress responsive genes including, transcription factors involved in abscisic acid (ABA) signaling pathway, ABA-INSENSITIVE 3 (ABI3)and ABA-INSENSITIVE 5 (ABI5); ABA responsive gene, RESPONSIVE TO DESSICATION 29B (RD29B), ABA-independent gene, RESPONSIVE TO DESSICATION 29A (RD29A) and Arabidopsis trithorax-like gene (ATX1) which function in stress responses via ABA-dependent and ABA-independent manner. Other genes included, ROS-signaling transcription factor ZAT10 and ZAT12, and the genes encoding ion transporters crucial for maintaining ion homeostasis, HIGH AFFINITY K+ TRANSPORTER 5 (HAK5) and SALT OVERLY SENSITIVE 1 (SOS1). Mel (10 µM) pre-treatment for 24 hrs followed by 50 mM salt treatment up-regulated ABI3, RD29B, ZAT12 and HAK5. The Ser (10 µM) pre-treatment significantly up-regulated ZAT12.These results indicate that indoleamine pre-treatment improved plant growth under salt stress with Mel facilitating salt tolerance via upregulation of ABA responsive genes, mediation of antioxidant defense systems to counteract the salt-induced ROS overproduction as well as controlling ion homeostasis. Although Ser displayed no significant effects on ABA signaling, it was found to increase the expression of antioxidant defense gene, ZAT12. This study demonstrates the importance of indoleamine pathway in mediation of salt stress response and provides the first indication of the involvement of Ser in salt stress tolerance. 


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 611
Author(s):  
Mirza Hasanuzzaman ◽  
Masashi Inafuku ◽  
Kamrun Nahar ◽  
Masayuki Fujita ◽  
Hirosuke Oku

Facultative halophyte Kandelia obovata plants were exposed to mild (1.5% NaCl) and severe (3% NaCl) salt stress with or without sodium nitroprusside (SNP; 100 µM; a NO donor), hemoglobin (Hb, 100 µM; a NO scavenger), or Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM; a NO synthase inhibitor). The plants were significantly affected by severe salt stress. They showed decreases in seedling growth, stomatal conductance, intercellular CO2 concentration, SPAD value, photosynthetic rate, transpiration rate, water use efficiency, and disrupted antioxidant defense systems, overproduction of reactive oxygen species, and visible oxidative damage. Salt stress also induced ion toxicity and disrupted nutrient homeostasis, as indicated by elevated leaf and root Na+ contents, decreased K+ contents, lower K+/Na+ ratios, and decreased Ca contents while increasing osmolyte (proline) levels. Treatment of salt-stressed plants with SNP increased endogenous NO levels, reduced ion toxicity, and improved nutrient homeostasis while further increasing Pro levels to maintain osmotic balance. SNP treatment also improved gas exchange parameters and enhanced antioxidant enzymes’ activities (catalase, ascorbate peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase). Treatment with Hb and l-NAME reversed these beneficial SNP effects and exacerbated salt damage, confirming that SNP promoted stress recovery and improved plant growth under salt stress.


2021 ◽  
Vol 288 ◽  
pp. 110360
Author(s):  
Hasna Ellouzi ◽  
Samia Oueslati ◽  
Kamel Hessini ◽  
Mokded Rabhi ◽  
Chedly Abdelly

2001 ◽  
Vol 13 (4) ◽  
pp. 399-404 ◽  
Author(s):  
Ramón Serrano ◽  
Alonso Rodriguez-Navarro
Keyword(s):  

2021 ◽  
Author(s):  
Seyed Morteza Zahedi ◽  
Marjan Sadat Hosseini ◽  
Narjes Fahadi Hoveizeh ◽  
Rahmatollah Gholami ◽  
Mostafa Abdelrahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document