scholarly journals Exogenous Tebuconazole and Trifloxystrobin Regulates Reactive Oxygen Species Metabolism Toward Mitigating Salt-Induced Damages in Cucumber Seedling

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 428 ◽  
Author(s):  
Sayed Mohsin ◽  
Mirza Hasanuzzaman ◽  
M. Bhuyan ◽  
Khursheda Parvin ◽  
Masayuki Fujita

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen species production and antioxidant defense systems.

2018 ◽  
Vol 47 (2) ◽  
pp. 368-377
Author(s):  
Bundit KHUNPON ◽  
Suriyan CHA-UM ◽  
Bualuang FAIYUE ◽  
Jamnong UTHAIBUTRA ◽  
Kobkiat SAENGNIL

The present study investigated the effect of paclobutrazol (PBZ) foliar application on oxidative metabolism in salt-stressed rice (Oryza sativa L. cv. ‘Pathumthani 1’; PTT1) seedlings. Fourteen-days-old rice seedlings, grown in the pots were pretreated with 15 mg L-1 paclobutrazol supplied as foliar spray. One week after pretreatment, the rice seedlings were exposed to salt stress (150 mM NaCl) for 12 days. It was observed that salinity enhanced the production of reactive oxygen species (ROS), including superoxide radical (O2•−), hydrogen peroxide (H2O2) and hydroxyl radical (OH·). It also increased reactive oxygen species-associated oxidative damage, measured in terms of lipoxygenase activity, conjugated dienes, malondialdehyde content and relative electrolyte leakage. Increase in these parameters was associated with the decrease in the activity of enzymatic antioxidants [superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)] and the levels of non-enzymatic antioxidants [ascorbic acid (AsA), total glutathione and α-tocopherol contents). Pretreatment of seedlings with paclobutrazol significantly lowered reactive oxygen species accumulation and membrane damage (p < 0.05), which can be correlated with the increased antioxidant activity (both enzymatic and non-enzymatic traits) under salt stress. The study concluded that paclobutrazol-treatment up-regulates the antioxidant defense system and recuperates the salt-induced oxidative damage in ‘Pathumthani 1’ rice seedlings under salt stress.


2007 ◽  
Vol 27 (14) ◽  
pp. 5214-5224 ◽  
Author(s):  
Jianhua Zhu ◽  
Xinmiao Fu ◽  
Yoon Duck Koo ◽  
Jian-Kang Zhu ◽  
Francis E. Jenney ◽  
...  

ABSTRACT The myristoylated calcium sensor SOS3 and its interacting protein kinase, SOS2, play critical regulatory roles in salt tolerance. Mutations in either of these proteins render Arabidopsis thaliana plants hypersensitive to salt stress. We report here the isolation and characterization of a mutant called enh1-1 that enhances the salt sensitivity of sos3-1 and also causes increased salt sensitivity by itself. ENH1 encodes a chloroplast-localized protein with a PDZ domain at the N-terminal region and a rubredoxin domain in the C-terminal part. Rubredoxins are known to be involved in the reduction of superoxide in some anaerobic bacteria. The enh1-1 mutation causes enhanced accumulation of reactive oxygen species (ROS), particularly under salt stress. ROS also accumulate to higher levels in sos2-1 but not in sos3-1 mutants. The enh1-1 mutation does not enhance sos2-1 phenotypes. Also, enh1-1 and sos2-1 mutants, but not sos3-1 mutants, show increased sensitivity to oxidative stress. These results indicate that ENH1 functions in the detoxification of reactive oxygen species resulting from salt stress by participating in a new salt tolerance pathway that may involve SOS2 but not SOS3.


2021 ◽  
Vol 22 (17) ◽  
pp. 9326
Author(s):  
Mirza Hasanuzzaman ◽  
Md. Rakib Hossain Raihan ◽  
Abdul Awal Chowdhury Masud ◽  
Khussboo Rahman ◽  
Farzana Nowroz ◽  
...  

The generation of oxygen radicals and their derivatives, known as reactive oxygen species, (ROS) is a part of the signaling process in higher plants at lower concentrations, but at higher concentrations, those ROS cause oxidative stress. Salinity-induced osmotic stress and ionic stress trigger the overproduction of ROS and, ultimately, result in oxidative damage to cell organelles and membrane components, and at severe levels, they cause cell and plant death. The antioxidant defense system protects the plant from salt-induced oxidative damage by detoxifying the ROS and also by maintaining the balance of ROS generation under salt stress. Different plant hormones and genes are also associated with the signaling and antioxidant defense system to protect plants when they are exposed to salt stress. Salt-induced ROS overgeneration is one of the major reasons for hampering the morpho-physiological and biochemical activities of plants which can be largely restored through enhancing the antioxidant defense system that detoxifies ROS. In this review, we discuss the salt-induced generation of ROS, oxidative stress and antioxidant defense of plants under salinity.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 681 ◽  
Author(s):  
Mirza Hasanuzzaman ◽  
M.H.M. Borhannuddin Bhuyan ◽  
Faisal Zulfiqar ◽  
Ali Raza ◽  
Sayed Mohammad Mohsin ◽  
...  

Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.


MedPharmRes ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1-6
Author(s):  
Binh Vong ◽  
Thuy Trinh ◽  
Nghiep Ngo ◽  
◽  
◽  
...  

Reactive oxygen species (ROS) or oxidative stress has been reported with strongly involving to pathogenesis of many diseases in human. On the other hand, ROS play a critical regulation as secondary signal to maintain intracellular redox equilibrium. Basically, the antioxidant defense systems in the body counteract with overproduced ROS. However, when the redox balance is broken under severe oxidative stress conditions, it leads to tissue injuries and numerous disorders. In this review, we briefly introduce the systems of ROS and antioxidants systems in the body and discuss the opposite roles of ROS in normal physiological conditions and diseases. For ROS-related diseases, conventional and currently developed antioxidant therapies are also described in this review.


2020 ◽  
Vol 8 (1) ◽  
pp. 95
Author(s):  
María T. Monsalves ◽  
Gabriela P. Ollivet-Besson ◽  
Maximiliano J. Amenabar ◽  
Jenny M. Blamey

Microorganisms present in Antarctica have to deal not only with cold temperatures but also with other environmental conditions, such as high UV radiation, that trigger the generation of reactive oxygen species. Therefore, Antarctic microorganisms must have an important antioxidant defense system to prevent oxidative damage. One of these defenses are antioxidant enzymes, such as catalase, which is involved in the detoxification of hydrogen peroxide produced under oxidative conditions. Here, we reported the isolation and partial characterization of an Antarctic bacterium belonging to the Serratia genus that was resistant to UV-C radiation and well-adapted to cold temperatures. This microorganism, denominated strain I1P, was efficient at decreasing reactive oxygen species levels produced after UV-C irradiation. Genomic and activity assays suggested that the enzymatic antioxidant defense mechanisms of strain I1P, especially its catalase enzyme, may confer UV resistance. This catalase was active in a wide range of temperatures (20–70 °C), showing optimal activity at 50 °C (at pH 7.0), a remarkable finding considering its psychrotolerant origin. In addition, this enzyme was thermostable, retaining around 60% of its activity after 6 h of incubation at 50 °C. The antioxidant defense systems of strain I1P, including its surprisingly thermoactive and thermostable catalase enzyme, make this microorganism a good source of biocompounds with potential biotechnological applications.


2018 ◽  
Vol 14 (4) ◽  
pp. 629-644
Author(s):  
Trinh Ngoc Nam ◽  
Nguyen Nhat Vinh ◽  
Le Hong Thia ◽  
Tran Do Kim Hue

Heavy metal contamination along with the increase in food demand are a primary concern in Vietnam and all over the world. In order to enhance crop tolerance to unfavorable cultivation conditions including heavy metal toxicity, understanding of plant response system under the effect of heavy metals is necessary. In the current study, physiological, biochemical and transcriptomic changes of rice seedings (Oryza sativa L. cv. IR64) were investigated under copper (Cu) stress. Root elongation and root fresh weight were decreased whereas accumulation of copper in root was enhanced significantly with increasing copper concentration from 2.5 to 15 M. In addition, copper induced endogenous reactive oxygen species (ROS) generation and activated isoenzymes of superoxide dismutase (SOD) and catalase (CAT). The molecular mechanism of rice roots in response to copper toxicity at mRNA expression level was analyzed by microarray technique. Functions and roles of genes were also analyzed by bioinformatic tools AgriGO and MapMan. Gene ontology analysis revealed that 1900 Cu responsive genes were involved in phytohormones, reactive oxygen species, signaling pathways, transcription factors, transport activities, antioxidant defense systems. Through phytohormones and reactive oxygen species, Cu may inhibit rice root growth. Phytohormones and reactive oxygen species can also be signal molecules in signaling pathways with the participation of mitogen-activated protein kinase (MAPK) cascades, and transcription factors in response to Cu stress. Detoxification and protection mechanisms may involve transport activities and antioxidant defense systems during Cu treatment. These results may provide new insights into mechanisms of rice plant to tolerate with Cu toxicity conditions.


Sign in / Sign up

Export Citation Format

Share Document