scholarly journals A center manifold application: existence of periodic travelling waves for the 2D abcd-Boussinesq system

2017 ◽  
Vol 11 (12) ◽  
pp. 641-667
Author(s):  
Jose R. Quintero ◽  
Alex M. Montes

In this paper we study the existence of periodic travelling waves for the 2D abcd Boussinesq type system related with the three-dimensional water-wave dynamics in the weakly nonlinear long-wave regime. Small solutions that are periodic in the direction of translation form an infinite-dimensional family, by characterizing them using a center manifold reduction of infinite dimension and codimension due to the fact that at the linear level we are dealing with an ill-posed mixed-type initial-value problem. As happens for the Benney-Luke model and the KP II model for wave speed large enough and large surface tension, we show that a unique global solution exists for arbitrary small initial data for the two-component bottom velocity, specified along a single line in the direction of translation (or orthogonal to it). As a consequence of this fact, we show that the spatial evolution of bottom velocity is governed by a dispersive, nonlocal, nonlinear wave equation.

2021 ◽  
Vol 8 (1) ◽  
pp. 46-74
Author(s):  
Christian Pötzsche ◽  
Evamaria Russ

Abstract The purpose of this informal paper is three-fold: First, filling a gap in the literature, we provide a (necessary and sufficient) principle of linearized stability for nonautonomous difference equations in Banach spaces based on the dichotomy spectrum. Second, complementing the above, we survey and exemplify an ambient nonautonomous and infinite-dimensional center manifold reduction, that is Pliss’s reduction principle suitable for critical stability situations. Third, these results are applied to integrodifference equations of Hammerstein- and Urysohn-type both in C- and Lp -spaces. Specific features of the nonautonomous case are underlined. Yet, for the simpler situation of periodic time-dependence even explicit computations are feasible.


1995 ◽  
Vol 291 ◽  
pp. 57-81 ◽  
Author(s):  
S. M. Churilov ◽  
I. G. Shukhman

We consider the nonlinear spatial evolution in the streamwise direction of slightly three-dimensional disturbances in the form of oblique travelling waves (with spanwise wavenumber kz much less than the streamwise one kx) in a mixing layer vx = u(y) at large Reynolds numbers. A study is made of the transition (with the growth of amplitude) to the regime of a nonlinear critical layer (CL) from regimes of a viscous CL and an unsteady CL, which we have investigated earlier (Churilov & Shukhman 1994). We have found a new type of transition to the nonlinear CL regime that has no analogy in the two-dimensional case, namely the transition from a stage of ‘explosive’ development. A nonlinear evolution equation is obtained which describes the development of disturbances in a regime of a quasi-steady nonlinear CL. We show that unlike the two-dimensional case there are two stages of disturbance growth after transition. In the first stage (immediately after transition) the amplitude A increases as x. Later, at the second stage, the ‘classical’ law A ∼ x2/3 is reached, which is usual for two-dimensional disturbances. It is demonstrated that with the growth of kz the region of three-dimensional behaviour is expanded, in particular the amplitude threshold of transition to the nonlinear CL regime from a stage of ‘explosive’ development rises and therefore in the ‘strongly three-dimensional’ limit kz = O(kx) such a transition cannot be realized in the framework of weakly nonlinear theory.


2009 ◽  
Vol 618 ◽  
pp. 1-11 ◽  
Author(s):  
PAOLO BLONDEAUX ◽  
GIOVANNA VITTORI

The process which leads to the formation of three-dimensional sand waves is investigated by means of a stability analysis which considers the time development of a small-amplitude bottom perturbation of a shallow tidal sea. The weakly nonlinear interaction of a triad of resonant harmonic components of the bottom perturbation is considered. The results show that the investigated resonance mechanism can trigger the formation of a three-dimensional bottom pattern similar to that observed in the field.


2018 ◽  
Vol 28 (11) ◽  
pp. 1850139 ◽  
Author(s):  
Laigang Guo ◽  
Pei Yu ◽  
Yufu Chen

This paper is concerned with the number of limit cycles bifurcating in three-dimensional quadratic vector fields with [Formula: see text] symmetry. The system under consideration has three fine focus points which are symmetric about the [Formula: see text]-axis. Center manifold theory and normal form theory are applied to prove the existence of 12 limit cycles with [Formula: see text]–[Formula: see text]–[Formula: see text] distribution in the neighborhood of three singular points. This is a new lower bound on the number of limit cycles in three-dimensional quadratic systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Hafiz Uddin ◽  
Mohammad Asif Arefin ◽  
M. Ali Akbar ◽  
Mustafa Inc

The closed-form wave solutions to the time-fractional Burgers’ equation have been investigated by the use of the two variables G ′ / G , 1 / G -expansion, the extended tanh function, and the exp-function methods translating the nonlinear fractional differential equations (NLFDEs) into ordinary differential equations. In this article, we ascertain the solutions in terms of tanh , sech , sinh , rational function, hyperbolic rational function, exponential function, and their integration with parameters. Advanced and standard solutions can be found by setting definite values of the parameters in the general solutions. Mathematical analysis of the solutions confirms the existence of different soliton forms, namely, kink, single soliton, periodic soliton, singular kink soliton, and some other types of solitons which are shown in three-dimensional plots. The attained solutions may be functional to examine unidirectional propagation of weakly nonlinear acoustic waves, the memory effect of the wall friction through the boundary layer, bubbly liquids, etc. The methods suggested are direct, compatible, and speedy to simulate using algebraic computation schemes, such as Maple, and can be used to verify the accuracy of results.


A point transformation between forms of the generalized Burgers equation (g b e) first given by Cates (1989) is investigated. Applications include generalizations of Scott’s (1981) classification of long-time behaviour for compressive wave solutions of the GBE and the equivalence of the exponential and cylindrical forms of the GBE, yielding an exact solution for the exponential GBE. Applications to nonlinear diffractive acoustics are considered by using a similarity reduction of the dissipative Zabolotskaya-Khokhlov (dzk) equation (describing the evolution of nearly plane waves in a weakly nonlinear medium with allowance for transverse variation effects) onto the GBE. The result is that waves from parabolic sources may be described by the cylindrical GBE in the case of two dimensions, and by the spherical GBE in the three-dimensional, cylindrically symmetric case. Furthermore, results on the formation of shocks and caustics in the context of the ZK equation are presented, along with an exact solution to the DZK equation. Exact solutions with caustic singularities are studied, along with a possible mechanism for their control. Finally, results on the evolution of a shock approaching a caustic are given through the identification of a series of parameter regimes dependent on the diffusivity.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850094 ◽  
Author(s):  
Justin Eilertsen ◽  
Jerry Magnan

We analyze the dynamics of the Poincaré map associated with the center manifold equations of double-diffusive thermosolutal convection near a codimension-four bifurcation point when the values of the thermal and solute Rayleigh numbers, [Formula: see text] and [Formula: see text], are comparable. We find that the bifurcation sequence of the Poincaré map is analogous to that of the (continuous) Lorenz equations. Chaotic solutions are found, and the emergence of strange attractors is shown to occur via three different routes: (1) a discrete Lorenz-like attractor of the three-dimensional Poincaré map of the four-dimensional center manifold equations that forms as the result of a quasi-periodic homoclinic explosion; (2) chaos that follows quasi-periodic intermittency occurring near saddle-node bifurcations of tori; and, (3) chaos that emerges from the destruction of a 2-torus, preceded by frequency locking.


2020 ◽  
Vol 34 ◽  
pp. 02002
Author(s):  
Aurelia Florea ◽  
Cristian Lăzureanu

In this paper we consider a three-dimensional nonlinear system which models the dynamics of a population during an epidemic disease. The considered model is a SIS-type system in which a recovered individual automatically becomes a susceptible one. We take into account the births and deaths, and we also consider that susceptible individuals are divided into two groups: non-vaccinated and vaccinated. In addition, we assume a medical scenario in which vaccinated people take a special measure to quarantine their newborns. We study the stability of the considered system. Numerical simulations point out the behavior of the considered population.


Sign in / Sign up

Export Citation Format

Share Document