Fractional integration formula for the \overline H-function

2017 ◽  
Vol 11 ◽  
pp. 1-10
Author(s):  
Ram K. Saxena ◽  
Junesang Choi ◽  
Jitendra Daiya ◽  
Dinesh Kumar
Filomat ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1931-1939 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

Recently Kiryakova and several other ones have investigated so-called multiindex Mittag-Leffler functions associated with fractional calculus. Here, in this paper, we aim at establishing a new fractional integration formula (of pathway type) involving the generalized multiindex Mittag-Leffler function E?,k[(?j,?j)m;z]. Some interesting special cases of our main result are also considered and shown to be connected with certain known ones.


2020 ◽  
Vol 6 (8(77)) ◽  
pp. 23-28
Author(s):  
Shuen Wang ◽  
Ying Wang ◽  
Yinggan Tang

In this paper, the identification of continuous-time fractional order linear systems (FOLS) is investigated. In order to identify the differentiation or- ders as well as parameters and reduce the computation complexity, a novel identification method based on Chebyshev wavelet is proposed. Firstly, the Chebyshev wavelet operational matrices for fractional integration operator is derived. Then, the FOLS is converted to an algebraic equation by using the the Chebyshev wavelet operational matrices. Finally, the parameters and differentiation orders are estimated by minimizing the error between the output of real system and that of identified systems. Experimental results show the effectiveness of the proposed method.


2014 ◽  
Vol 19 (7) ◽  
pp. 1593-1621 ◽  
Author(s):  
Yuliya Lovcha ◽  
Alejandro Perez-Laborda

A recent finding of the SVAR literature is that the response of hours worked to a (positive) technology shock depends on the assumed order of integration of the hours. In this work we relax this assumption, allowing fractional integration in hours and productivity. We find that the sign and magnitude of the estimated responses depend crucially on the identification assumptions employed. Although the responses of hours recovered with short-run (SR) restrictions are positive in all data sets, long-run (LR) identification results in negative, although sometimes not significant responses. We check the validity of these assumptions with the Sims procedure, concluding that both LR and SR are appropriate to recover responses in a fractionally integrated VAR. However, the application of the LR scheme always results in an increase in sampling uncertainty. Results also show that even the negative responses found in the data could still be compatible with real business cycle models.


2022 ◽  
pp. 107754632110593
Author(s):  
Mohammad Hossein Heydari ◽  
Mohsen Razzaghi ◽  
Zakieh Avazzadeh

In this study, the orthonormal piecewise Bernoulli functions are generated as a new kind of basis functions. An explicit matrix related to fractional integration of these functions is obtained. An efficient direct method is developed to solve a novel set of optimal control problems defined using a fractional integro-differential equation. The presented technique is based on the expressed basis functions and their fractional integral matrix together with the Gauss–Legendre integration method and the Lagrange multipliers algorithm. This approach converts the original problem into a mathematical programming one. Three examples are investigated numerically to verify the capability and reliability of the approach.


2021 ◽  
Vol 6 (1) ◽  
pp. 10
Author(s):  
İbrahim Avcı 

In this paper, we consider numerical solutions for a general form of fractional delay differential equations (FDDEs) with fractional derivatives defined in the Caputo sense. A fractional integration operational matrix, created using a fractional Taylor basis, is applied to solve these FDDEs. The main characteristic of this approach is, by utilizing the operational matrix of fractional integration, to reduce the given differential equation to a set of algebraic equations with unknown coefficients. This equation system can be solved efficiently using a computer algorithm. A bound on the error for the best approximation and fractional integration are also given. Several examples are given to illustrate the validity and applicability of the technique. The efficiency of the presented method is revealed by comparing results with some existing solutions, the findings of some other approaches from the literature and by plotting absolute error figures.


Sign in / Sign up

Export Citation Format

Share Document