Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

2012 ◽  
Vol 13 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Shiming Chen ◽  
Huifeng Zhang
2010 ◽  
Vol 163-167 ◽  
pp. 3555-3559
Author(s):  
Wei Gu ◽  
Hong Nan Li

This paper presents a phase of the research program to determine the feasibility of a proposed CFRP retrofit method to strengthen the corroded concrete filled steel tube columns. This method is wrapping the corroded concrete filled steel tube column with CFRP material. Eight concrete filled steel tube columns were tested in the laboratory with four of them strengthened using the proposed technique. All specimens were notched in the center zone to simulate the loss of section due to corrosion the four of them were wrapped with CFRP composite tubes in the damage area. All specimens were axially loaded to failure while strain and displacement were measured to demonstrate the validity of this repair concept. This paper presents the experimental results and discusses the findings with preliminary conclusions on the feasibility of the proposed strengthening method.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan Liu ◽  
Wei Wang ◽  
Changqing Wang ◽  
Shuosong Bi ◽  
Jianming Zhu

With the continuous progress of the construction industry, the requirements for concrete in the bridge engineering are getting higher and higher. This research mainly discusses the detection of D-shaped concrete-filled steel tube structure in bridge engineering. In this study, the D-shaped concrete-filled steel tube member was used as the research object, and the load-displacement curve of the D-shaped concrete-filled steel tube compression-bending member was analyzed by the fiber model program. In the determination of the bonding state of the concrete-filled steel tube interface, in order to avoid the impact of mechanical and manual vibrating and the difference in concrete pouring methods on the test, the study uses C60 self-compacting microexpansion concrete. While pouring the specimens, three sets of cube specimens with a side length of 100 mm are reserved to determine the mechanical properties of the concrete simultaneously. In the temperature shock measurement of the concrete-filled steel tube specimen, the concrete-filled steel tube specimen was placed in a resistance heater during the simulated heating stage and heated to 20°C, 40°C, 60°C, and 80°C at room temperature. When measuring the mechanical properties of the specimen under the axial load, the specimen is heated from room temperature to the temperature of the entire section to reach 20°C, 40°C, 60°C, and 80°C. After preloading, the load of each level is 10t for continuous operation. Load and record the strain of the steel pipe and concrete under each load. If only the radial effect of the steel tube on concrete is considered, the temperature of 11°C, 20°C, and 80°C is the best ambient temperature. The results show that the D-shaped steel tube concrete interface state can provide a certain theoretical and experimental reference for the optimization of the steel tube concrete interface, ensuring the long-term working performance of the steel tube concrete under the harsh environment.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4839
Author(s):  
Jinglin Fan ◽  
Fei Lyu ◽  
Faxing Ding ◽  
Dan Bu ◽  
Siqing Wang ◽  
...  

Numerous studies have been carried out on the axially loaded circular concrete-filled steel tube (CCFST) stub columns. However, to date, no clear evaluation criterion for the compatibility of its design parameters has been established. In the present study, the compatibility of the design parameters (concrete compressive strength fc, steel yield strength fy, diameter D and thickness of steel tube t) of axially loaded CCFST stub columns was quantitatively investigated in terms of the contribution of the composite actions to the axial bearing capacity of the columns. The composite ratio λ was proposed as an indicator to represent the effectiveness of the composite actions. A numerical framework of the determination of λ was established, making use of a series of existing widely recognized constitutive models of structural steel and concrete. Some modifications were carried out on these models to ensure the numerical stability of the presented analysis. Moreover, the rationality of the combined use of these models was verified. The analytical results show that excessive or very small D/t ratio should be avoided in design. Meanwhile, the combined use of low-strength steel and high-strength concrete should be avoided. A table of optimal D/t ratios corresponding to different material strength matches was provided for designers. Finally, an optimization of the design parameters using the proposed method and the existing design specification was performed.


Sign in / Sign up

Export Citation Format

Share Document