An absolute displacement approach for modeling of sliding structures

2008 ◽  
Vol 29 (6) ◽  
pp. 659-671
Author(s):  
A. Krishnamoorthy
Author(s):  
Duraisamy Udhayakumari

In the design of novel fluorescent chemosensors, investigation of new sensing mechanisms between recognition and signal reporting units is of increasing interest. In recent years, a smart chemosensor probe containing a 1,8-naphthalimide moiety could be developed as a fluorescent and colorimetric sensor for toxic anions, metal ions, biomolecules, nitroaromatics, and acids and be further applied to monitor the relevant biological applications. In this field, several problems and challenges still exist. This critical review is mainly focused on various sensing mechanisms that have emerged in the past few years, such as Photo-Induced Electron Transfer (PET), Intramolecular Charge Transfer (ICT), Fluorescence Resonance Energy Transfer (FRET), Excited-State Intramolecular Proton Transfer (ESIPT), hydrogen bonding and displacement approach. The review concludes with some current and future perspectives, including the use of the naphthalimides for sensing anions, metal ions, biomolecules, nitroaromatics and acids and their potential uses in various fields.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3178 ◽  
Author(s):  
Morgan Chandler ◽  
Tatiana Lyalina ◽  
Justin Halman ◽  
Lauren Rackley ◽  
Lauren Lee ◽  
...  

RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.


Author(s):  
Bogdan Iwanowski ◽  
Henrik Grigorian ◽  
Ingar Scherf

Subsidence of the Ekofisk platforms creates several operational challenges. For safety of the platforms, it is of great importance to find the wave impact loads acting on the platforms’ decks. The paper describes how such loads can be computed. Three theoretical wave models are discussed in the paper: the Airy wave, Airy wave modified through Wheeler stretching and the 5th order non-linear Stokes wave. The wave loads for these wave models are computed by various methods. The method based on momentum displacement approach and Morison-type equation developed by Dr. Kaplan is used as a reference point. The loads are also computed through a solution of complete Navier-Stokes equations, with the Volume of Fluid (VOF) method used to trace motion of the fluid’s free surface. Results of different wave models and different computational methods are compared and discussed.


2017 ◽  
Vol 9 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Liyuan Qin ◽  
Lingjie Hou ◽  
Jia Feng ◽  
Jianbin Chao ◽  
Yu Wang ◽  
...  

A new and simple julolidine based molecular receptor system L linked to 4-phenylsemicarbazide through an imine moiety has been synthesized and characterized.


Sign in / Sign up

Export Citation Format

Share Document