scholarly journals Broccoli Fluorets: Split Aptamers as a User-Friendly Fluorescent Toolkit for Dynamic RNA Nanotechnology

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3178 ◽  
Author(s):  
Morgan Chandler ◽  
Tatiana Lyalina ◽  
Justin Halman ◽  
Lauren Rackley ◽  
Lauren Lee ◽  
...  

RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.

Talanta ◽  
2020 ◽  
Vol 217 ◽  
pp. 121016 ◽  
Author(s):  
Wancun Zhang ◽  
Pin Zhang ◽  
Fei Zhang ◽  
Weyland Cheng ◽  
Ying Xu ◽  
...  

Author(s):  
Nabeel Salih Ali ◽  
Zaid Abdi Alkaream Alyasseri ◽  
Abdulhussein Abdulmohson

Wireless Sensor Networks (WSNs) for healthcare have emerged in the recent years. Wireless technology has been developed and used widely for different medical fields. This technology provides healthcare services for patients, especially who suffer from chronic diseases. Services such as catering continuous medical monitoring and get rid of disturbance caused by the sensor of instruments. Sensors are connected to a patient by wires and become bed-bound that less from the mobility of the patient. In this paper, proposed a real-time heart pulse monitoring system via conducted an electronic circuit architecture to measure Heart Pulse (HP) for patients and display heart pulse measuring via smartphone and computer over the network in real-time settings. In HP measuring application standpoint, using sensor technology to observe heart pulse by bringing the fingerprint to the sensor via used Arduino microcontroller with Ethernet shield to connect heart pulse circuit to the internet and send results to the web server and receive it anywhere. The proposed system provided the usability by the user (user-friendly) not only by the specialist. Also, it offered speed andresults accuracy, the highest availability with the user on an ongoing basis, and few cost.


Energy is an essential component in supporting people’s daily lives and is a significant economical element in development of the country. The eventual depletion of conventional energy resources and their harmful impacts on environment as well as the rising energy costs and the limitations of new energy resources and technologies have pushed efficient energy management to the top of the agenda. But how the energy utilization can be managed? A simple answer to this is viable and real time metering, which enables calculation of run time energy consumption and obtaining the real-time as well as cumulative cost. In this research an Innovative hardware and IoT based solution to this problem is availed that could provide live information related to consumption of electricity by various appliances. The methodology used in this research is mainly based on a hardware tool named Elite 440 which is a meter and provides the data about various electrical parameters. This data so obtained is made visible on the dashboard in a user friendly. The data so visible includes various parameters like voltage, current, power factor etc. Also the data so obtained on the dashboard gets updated in each five minutes and simultaneously the cost gets updated which makes it real time monitoring System.


The Analyst ◽  
2018 ◽  
Vol 143 (16) ◽  
pp. 3798-3807 ◽  
Author(s):  
Yangyang Jiang ◽  
Lin Du ◽  
Yuanming Li ◽  
Quanquan Mu ◽  
Zhongxu Cui ◽  
...  

The real-time continuous-flow PCR inside a 3D spiral microchannel is realized by a novel self-activated microdroplet generation/transport mechanism.


Author(s):  
Rashima Mahajan ◽  
Pragya Gupta

The progressive research in the field of internet of things provides a platform to develop high performance and robust automated systems to control external devices via internet data transfer and cloud computing. The present emerging IoT research including user-friendly and easily-wearable sensors and signal acquisition techniques have made it possible to expand the IoT application areas towards healthcare sector. This chapter aims at providing a rationale behind development of IoT applications in healthcare, architecture details of internet of healthcare things (IoHT), and highlights a step-by-step development of IoT-based heart rate measurement and monitoring system using Arduino. The developed module has been advanced to transmit data over the internet on the ThingSpeak channel to allow remote monitoring in real time. This may help to improve/restore useful life among cardiac patients via real-time monitoring through remote locations.


2018 ◽  
pp. 777-793
Author(s):  
Srinivasa K. G. ◽  
Satvik Jagannath ◽  
Aakash Nidhi

Mobile devices are changing the way people live. Users have everything on their fingertips and to support them, there are scores of application which add to the usability and comfort. “Know your world better” is an Augmented Reality application developed for Android. This application helps the user to find friends and locate places in close proximity. In this paper we talk about an application that describes a method of augmenting Point of Interests (POI's) on a mobile device. User has to move his phone pointing in a direction of his choice and POI's if any are shown in real time. The user's interest with respect to the environment is inferred from speech or by selecting from the choices; this data is used for information retrieval from the cloud. The result of context-sensitive information retrieval is augmented onto the view of the mobile and provides speech output.


Author(s):  
N. B. Rachana ◽  
K. G. Srinivasa ◽  
S. Seema

The Airplane Health Surveillance System is an information system which is designed to guide the pilot to make decision under uncertainty. The system is expected to detect the defect along with cause for the delay and airplane crashes which has high impact on society. The system is capable of detecting and diagnosing the defects which may be initiated during a flight. There by trigger a maintenance procedure to safeguard the airplane from possible odds by analyzing the effects caused by the defect detected. Airplane health surveillance system collects data in real-time from flying fleet and makes it available to ground operations. Ground system aims at incorporating new technical and functional features to provide best in class features for operational and strategic insight. In this work two actors are considered namely supplier (airplane manufacturer who delivers the services) and operator (operates the airplane in day to day life). This is a user friendly though has a very powerful impact on the aerospace division by eliminating the uncertain economic loss.


Sign in / Sign up

Export Citation Format

Share Document