scholarly journals Analytical Prediction of Temperature Distribution in Cylinder Liner during Various Boring Operations

2008 ◽  
Vol 2 (3) ◽  
pp. 278-289
Author(s):  
Yulong TANG ◽  
Hiroyuki SASAHARA
Author(s):  
Zakarya Djelloul Khedda ◽  
Kamel Boughrara ◽  
Frédéric Dubas ◽  
Baocheng Guo ◽  
El Hadj Ailam

Purpose Thermal analysis of electrical machines is usually performed by using numerical methods or lumped parameter thermal networks depending on the desired accuracy. The analytical prediction of temperature distribution based on the formal resolution of thermal partial differential equations (PDEs) by the harmonic modeling technique (or the Fourier method) is uncommon in electrical machines. Therefore, this paper aims to present a two-dimensional (2D) analytical model of steady-state temperature distribution for permanent-magnet (PM) synchronous machines (PMSM) operating in generator mode. Design/methodology/approach The proposed model is based on the multi-layer models with the convolution theorem (i.e. Cauchy’s product theorem) by using complex Fourier’s series and the separation of variables method. This technique takes into the different thermal conductivities of the machine parts. The heat sources are determined by calculating the different power losses in the PMSM with the finite-element method (FEM). Findings To validate the proposed analytical model, the analytical results are compared with those obtained by thermal FEM. The comparisons show good results of the proposed model. Originality/value A new 2D analytical model based on the PDE in steady-state for full prediction of temperature distribution in the PMSM takes into account the heat transfer by conduction, convection and radiation.


Author(s):  
Chidiebere Nwaiwu ◽  
Kevin Nwaigwe ◽  
Nnamdi Ogueke

There has been a global search for alternative fuels that are environmentally friendly to replace and or compliment the conventional fossil fuels used in running engines. This is in line with the global action to reduce CO2 emissions hence ameliorating the effect of climate change. Biodiesel fuels have been adjudged to be clean energy with minimal environmental pollution during combustion. Hence, biodiesel fuels for running compression ignition engines have been developed from various feedstocks such as vegetable oils, animal fat, and waste or used cooking oils. The properties of these biodiesels have been reported to be dependent on the feedstock type and therefore vary according to the source feedstock. In carrying out this present study on the effects of utilising biodiesel fuel on the compression ignition engine, a numerical study of temperature distribution in the cylinder liner of biodiesel-powered compression ignition engine is presented. Biodiesel produced from palm kernel oil is used. Eight nodes in the cylinder liner spanning the top section of the liner, midpoint and the interface between the liner and the block were used as data source as it is established that sharp-edged points are most likely regions for thermal stress. Of the eight nodes selected, four were edge nodes and the other four were nodes at the interface with varying conditions. Model equations used for the study were developed and subsequently transformed using the finite difference method. Numerical solutions were obtained from computer codes written in MATLAB programming language. The obtained results from this code were compared to results obtained from commercial software (ANSYS FLUENT) for same geometry and boundary conditions. Results on the cylinder liner showed steady state temperatures were reached in about five minutes using both the MATLAB code and ANSYS FLUENT and both results showed a similar trend of temperature distribution in the radial direction. However, the MATLAB code showed higher temperatures at the upper section of the liner material as compared to the midpoint of the liner whereas ANSYS FLUENT showed the midpoint section to possess maximum temperatures as compared to the cylinder head section. Both results agree with the lower section having least temperature distribution. Further analyses were carried out on the midpoint of the cylinder and the cylinder head section and factors responsible for the discrepancies discussed. The outcome of this study presents palm kernel based biodiesel as an alternative fuel in cylinder engines while highlighting sections of the engine that require design attention in terms of heat flux and engine stability.


1963 ◽  
Vol 85 (3) ◽  
pp. 209-213 ◽  
Author(s):  
G. E. Myers ◽  
J. J. Schauer ◽  
R. H. Eustis

The heat-transfer characteristics of two-dimensional, incompressible, turbulent wall jets are discussed. An analytical prediction is made for the local Stanton number and data are presented for a step wall temperature distribution. The method for extending these data to arbitrary heating conditions is shown. Temperature surveys in the wall jet boundary layer are also presented.


Author(s):  
P. Hanafizadeh ◽  
B. Sajadi ◽  
M. H. Saidi ◽  
H. Khalkhali ◽  
M. Taherraftar

Automotive industry frequently needs to test new products, according to different production parameters, in order to determine the actual thermal behavior of bodies before mass production is implemented. Numerical simulation of these processes can reduce the very expensive and time consuming experimental procedures. For the drying and hardening process of the top paint applied in the coating process, the body temperature must be raised according to the paint manufacturer regulations. Consequently, prediction of temperature distribution of the car body during various zones of ovens is very vital in the design and performance analysis of the paint dryers. In this research, a novel semi-analytical approach has been used to predict the body temperature variation during the curing process. Considering the energy balance for the body, a set of differential equation has been extracted, depending on the oven zone. These equations can be solved numerically to find the transient temperature profile of the car body. Some parameters in these equations have been achieved by experimental procedure. The results show that the present model predictions are in a good agreement with the experimental data. Therefore, the developed model has a reasonable accuracy and can be used as an efficient robust approach to distinguish overall thermal behavior of the body. These techniques can be used to optimize the design of curing paint oven.


2019 ◽  
Vol 178 (3) ◽  
pp. 257-263
Author(s):  
Andrzej WOLFF

In the paper a comprehensive model of a piston-ring-cylinder (PRC) system has been presented. The local thickness of the oil film can be compared to height of the combined surface roughness of a cylinder liner and piston rings. Equations describing the mixed lubri-cation problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been ap-plied. The main parts of the model have been experimentally verified abroad by the author at the marine engine designing centre. In contrast to the previous papers of the author concerning the PRC system of combustion engines, new calculation results for a ma-rine two-stroke engine have been presented. Firstly the right selection of barrel-shaped sliding surface of piston rings has been analysed. Secondly the influence of oil temperature distribution along the cylinder liner on the lubrication of the PRC system has been assessed. The developed model and software can be useful for optimization of the PRC system design.


Author(s):  
Chidiebere F. Nwaiwu ◽  
Olisaemeka C. Nwufo ◽  
Johnson O. Igbokwe ◽  
Nnamdi V. Ogueke ◽  
Emmanuel E. Anyanwu

A numerical study of temperature distribution in the cylinder liner of biodiesel-powered compression ignition engine is presented. The mathematical model equations developed were based on heat transfers in the cylinder liner and subsequently transformed using the finite difference method. Numerical solutions were obtained from computer codes written in MATLAB programming language. A biodiesel produced from Nigerian physic nut oil was used in the study. The result was compared with that obtained for conventional diesel fuel. The results revealed that the cylinder head section of the liner material presented higher temperature distribution compared to the oil sump section of the liner. Over a twelve-minute time range, the liner attained steady state with Jatropha-based biodiesel, recording a maximum temperature of 873.1°C. Conventional diesel recorded the lower temperature of 784.3°C. Results also showed that the cylinder head section of the liner material closest to the combustion chamber experienced the greatest temperature rise in comparison to other parts of the liner. These results show that though there are lots of publications confirming that a compression ignition engine previously running on diesel fuel can run on biodiesel fuel or its blend with diesel, there is a need for a further critical study on the development of engine parts like the cylinder liner.


Sign in / Sign up

Export Citation Format

Share Document