Semi Analytical Prediction of Automobile Body Temperature Distribution in the Top Coat Paint Oven

Author(s):  
P. Hanafizadeh ◽  
B. Sajadi ◽  
M. H. Saidi ◽  
H. Khalkhali ◽  
M. Taherraftar

Automotive industry frequently needs to test new products, according to different production parameters, in order to determine the actual thermal behavior of bodies before mass production is implemented. Numerical simulation of these processes can reduce the very expensive and time consuming experimental procedures. For the drying and hardening process of the top paint applied in the coating process, the body temperature must be raised according to the paint manufacturer regulations. Consequently, prediction of temperature distribution of the car body during various zones of ovens is very vital in the design and performance analysis of the paint dryers. In this research, a novel semi-analytical approach has been used to predict the body temperature variation during the curing process. Considering the energy balance for the body, a set of differential equation has been extracted, depending on the oven zone. These equations can be solved numerically to find the transient temperature profile of the car body. Some parameters in these equations have been achieved by experimental procedure. The results show that the present model predictions are in a good agreement with the experimental data. Therefore, the developed model has a reasonable accuracy and can be used as an efficient robust approach to distinguish overall thermal behavior of the body. These techniques can be used to optimize the design of curing paint oven.

Author(s):  
Jie Cui ◽  
Mahesh Nadkarni ◽  
Satish M. Mahajan ◽  
Diego M. Robalino

Current transformer (CT) is a device that transfers the electrical energy from one circuit to another through a shared magnetic field. In a CT, heat is generated in the core, tank wall, and primary and secondary windings. The performance of a CT is well indicated by the temperature distribution inside it. In this study, numerical analysis was performed to predict the temperature distribution inside the CT at every instant under different load conditions. It was found that the numerical results obtained were in good agreement with the experimental measurements. Thus, it was concluded that the numerical method can be a useful tool in CT design and performance monitoring.


1959 ◽  
Vol 14 (5) ◽  
pp. 785-788
Author(s):  
R. G. Bartlett ◽  
P. D. Altland

A comparison of the altitude tolerance of restrained and nonrestrained adult male (225–300 gm) and adult female (150–225 gm) Sprague-Dawley rats exposed to an altitude of 33,500 ft. at various rates of ascent with various prealtitude exposure treatments was made. Animals restrained immediately before altitude exposure with rapid ascent (2000 ft/min) to altitude die significantly sooner than do nonrestrained control animals. Slow stepwise ascent to altitude (2 ½ –4 hr. to reach terminal altitude) increased the altitude tolerance of both the restrained and nonrestrained animals but much more for the restrained animals. When body temperatures were dropped to 25℃ before altitude exposure there were no deaths (up to 6 hr.) in either the restrained or nonrestrained animals. A lesser body temperature fall provided less protection. It appears that restraint may affect altitude tolerance in the rat by hastening the body temperature fall ordinarily associated with altitude exposure and by increasing the oxygen requirements as a result of the struggling to escape restraint. Since the former increases altitude tolerance and the latter reduces it, restraint may significantly increase or significantly decrease altitude tolerance, depending on the experimental procedure. Submitted on March 4, 1959


2016 ◽  
Vol 4 (2) ◽  
pp. 17-35
Author(s):  
Mahmmod Aziz Muhammed ◽  
Abdul Ridha Ghedayer

In order to reach the maximum power from a transformer and avoid thermal accidents, it is essential to carefully study its thermal behavior. This research is to apply some computational and analytical approaches in order to obtain a temperature distribution within the core and winding of a transformer. Hence its thermal behavior can be analytically and practically predicted. The aim is to optimize transformer operation under various load conditions during the extreme weather of summer season in the southern part of Iraq. The numerical scheme applied which is based on finite difference method has shown to be in good agreement with the empirical data measured on the external finned body of transformer.


2011 ◽  
Vol 704-705 ◽  
pp. 462-467
Author(s):  
Liang Jing Jing ◽  
Rui Li ◽  
Yu Yu Li

Heat transfer in wood particle controls the process of the pyrolysis. This paper makes a 2-D transient heat transfer model in cylindrical to predict the thermal behavior of wood particle in the process of fast pyrolysis. Wood anisotropy and thermophysical properties are considered in this model, as well as the influence of heat reaction on temperature distribution in wood particle. Based on the calculation of transient temperature in wood particle, and analysis of the temperature distribution during the process of wood fast pyrolysis at different time, this paper preliminarily discusses the optimization of parameters in wood particle fast pyrolysis. Keywords: pyrolysis, heat transfer, particle, wood


2013 ◽  
Vol 561 ◽  
pp. 542-546
Author(s):  
Zhi Min Fan ◽  
Liang Gao ◽  
Hui Min Li ◽  
Ru Cheng Liu

Solid models of the involute gear, the gear with meshed medium belt and the medium belt were built with the PROE software. Then the steady-sate temperature field of the solid model was analyzed with ANSYS software. The result showed that the body temperature distribution on the tooth face was not effected by the medium belt. Different duty parameters were selected to analyze the highest temperature of the medium belt. So theory basis for choose of the medium belt and the duty parameters was provided.


1976 ◽  
Vol 98 (3) ◽  
pp. 491-495 ◽  
Author(s):  
B. S. Singh ◽  
A. Dybbs

When a sensor is embedded in a solid body to measure its internal temperature, any conduction to, or from, its sensing element may cause the indicated temperature to be different from the true temperature. This paper describes an analysis of the error caused by conduction when there is an arbitrary temperature distribution in thebbody along the sensor. The sensor is modeled as a cylindrical fin and the appropriate conduction equation is solved. The solution gives a correction for the error which depends on such parameters as, depth of immersion, thermocouple wire and insulation properties, contact between the sensor and the body, and temperature distribution in the body. The latter may not be known, but the measured temperature distribution can be used as a first approximation. The corrected value can then be used to obtain a better estimate of the error. The results show good agreement with experimental observations.


2011 ◽  
Vol 5 (1) ◽  
pp. 18-34 ◽  
Author(s):  
Rick Dolphijn

Starting with Antonin Artaud's radio play To Have Done With The Judgement Of God, this article analyses the ways in which Artaud's idea of the body without organs links up with various of his writings on the body and bodily theatre and with Deleuze and Guattari's later development of his ideas. Using Klossowski (or Klossowski's Nietzsche) to explain how the dominance of dialogue equals the dominance of God, I go on to examine how the Son (the facialised body), the Father (Language) and the Holy Spirit (Subjectification), need to be warded off in order to revitalize the body, reuniting it with ‘the earth’ it has been separated from. Artaud's writings on Balinese dancing and the Tarahumaran people pave the way for the new body to appear. Reconstructing the body through bodily practices, through religion and above all through art, as Deleuze and Guattari suggest, we are introduced not only to new ways of thinking theatre and performance art, but to life itself.


2020 ◽  
Vol 16 (1) ◽  
pp. 4-12
Author(s):  
Vandana Garg ◽  
Rohit Dutt

Background: Fever, is known as pyrexia, may occur due to infection, inflammation, or any tissue damage and disease states. Normally, the infected or damaged tissue initiates the enhanced formation of pro-inflammatory mediators like cytokines which further increases the synthesis of prostaglandin E2 (PgE2) near the hypothalamic area and thereby trigger the hypothalamus to elevate the body temperature. Objective: Antipyretics are the agents which reduce the elevated body temperature. The most commonly used antipyretic agent, paracetamol, may be fatal due to its side effects. Methods: In this review paper, Chemical Abstracts, Google Scholar, PubMed, and Science Direct were the sources for the published article to collect information regarding antipyretic activity. Results: This review compiles the antipyretic plants that may be useful to treat fever due to various diseases. Conclusion: These medicinal plants could be good alternatives for traditional allopathic antipyretics.


Sign in / Sign up

Export Citation Format

Share Document