scholarly journals Investigation of the effect of rotation speed on the torsional vibration of transmission system

2019 ◽  
Vol 13 (4) ◽  
pp. JAMDSM0079-JAMDSM0079 ◽  
Author(s):  
Xiaogang LIU ◽  
Zhaoyu WU ◽  
Jie LU ◽  
Jinli XU
2019 ◽  
Vol 256 ◽  
pp. 02019 ◽  
Author(s):  
Xiaogang Liu ◽  
Zhaoyu Wu ◽  
Jie Lu ◽  
Jinli Xu

In the operating process, it is found the vibration of main reducer reaches a maximum value when certain types of vehicles are running at a speed around 4000 RPM. However, how the rotation speed of engine affects the vibration responses to automobile transmission system has not been investigated theoretically in details. To investigate this problem, the transmission system of automobile is simplified to a drive-final shaft system in this research, and a coupled vibration model of drive-final shaft system is developed. This model is used to simulate the vibration response to transmission system at different rotation speeds. Simulation results show that the torsional vibration responses reach the maximum when the rotation speeds are 3800 RPM and 4200 RPM and the vibration responses of pinion reach the maximum value when the rotation speeds are 4000 RPM and 4200 RPM. Moreover, finite element analysis is conducted to investigate the reason for this phenomenon. It is found that the torsional vibration responses reach the maximum value when the excitation frequency of engine is close to the resonance frequency of drive shafts. This research provides an effective method to analyse the vibration characteristics of automobile transmission system.


2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Song Jiang ◽  
Wei Li ◽  
Lianchao Sheng ◽  
Jiajun Chen ◽  
Min Li

The nonlinear torsional vibration and instability oscillation caused by nonlinear damping in the shearer electromechanical coupling cutting transmission system in shearer driven by the permanent magnet synchronous motor (PMSM) is investigated in this paper. The electromechanical coupling transmission system in the shearer is equivalent to a concentrated mass model for the purpose of establishing the system dynamic model by the Lagrange–Maxwell equation. Then, the Routh–Hurwitz criterion is used to determine the torsional vibration critical point and stability region for the Hopf bifurcation for the cutting transmission system. According to the Routh–Hurwitz stability criterion, the Hopf bifurcation type and the effect of the supercritical Hopf bifurcation in the torsional vibration of the cutting transmission system are analyzed. Furthermore, based on the washout filter, the Hopf bifurcation controller is designed for suppressing the transmission system’s large vibration amplitude and unstable oscillation. In addition, the influences of the linear gain and nonlinear gain on the bifurcation point and the limit cycle amplitude are discussed. Finally, the numerical simulation results indicate the effectiveness of the designed controller. The research achievements can provide a theoretical basis for design or optimize the cutting transmission system of high-reliability shearer driven by PMSM.


Author(s):  
X. Tan ◽  
L. Hua ◽  
C. Lu ◽  
C. Yang ◽  
Y. Wang ◽  
...  

To reduce the torsional vibration of vehicle power transmission system (VPTS), a torsional vibration model with multiple degrees of freedom (MDOF) of VPTS was established. The scheme of equipping torsional vibration dampers (TVDs) on the driveshaft was employed by the calculation of the forced vibration and the free vibration of the VPTS. The energy method was used to optimize the parameters of single-stage, two-stage parallel and two-stage series TVDs based on the principle that balances the damping effect and lightweight design. On the basis of this, the parameters of the models incorporating TVD and elastic couplings were optimized. Results showed that the proposed method can ensure the damping effects of TVD and realize the lightweight design.


2012 ◽  
Vol 490-495 ◽  
pp. 2318-2322
Author(s):  
De Min Chen ◽  
Jin Hao Xu ◽  
Xiao Fei Shi ◽  
Yue Yin Ma

To verify the damping effect of dual mass flywheel, the experiment is designed in use of power-transmission test-bed and rev-torque testing apparatus, and dual mass flywheel of DCT transmission system DQ250 is used to test its damping effect in the experiment. Kinds of conditions of car, like idle condition, run condition, climb condition, are simulated in experiment. The results show that different engine revs and loads, different damping effects of dual mass flywheel. The high engine rev and the more load, the better damping effect of dual mass flywheel.


Sign in / Sign up

Export Citation Format

Share Document