A new torsional vibration coupling model for transmission system in diesel generator

2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.

2018 ◽  
Vol 46 (3) ◽  
pp. 174-219 ◽  
Author(s):  
Bin Li ◽  
Xiaobo Yang ◽  
James Yang ◽  
Yunqing Zhang ◽  
Zeyu Ma

ABSTRACT The tire model is essential for accurate and efficient vehicle dynamic simulation. In this article, an in-plane flexible ring tire model is proposed, in which the tire is composed of a rigid rim, a number of discretized lumped mass belt points, and numerous massless tread blocks attached on the belt. One set of tire model parameters is identified by approaching the predicted results with ADAMS® FTire virtual test results for one particular cleat test through the particle swarm method using MATLAB®. Based on the identified parameters, the tire model is further validated by comparing the predicted results with FTire for the static load-deflection tests and other cleat tests. Finally, several important aspects regarding the proposed model are discussed.


Author(s):  
Kaixing Hong ◽  
Hai Huang

In this paper, a condition assessment model using vibration method is presented to diagnose winding structure conditions. The principle of the model is based on the vibration correlation. In the model, the fundamental frequency vibration analysis is used to separate the winding vibration from the tank vibration. Then, a health parameter is proposed through the vibration correlation analysis. During the laboratory tests, the model is validated on a test transformer, and manmade deformations are provoked in a special winding to compare the vibrations under different conditions. The results show that the proposed model has the ability to assess winding conditions.


Author(s):  
Chao Liu ◽  
Dongxiang Jiang ◽  
Jingming Chen

Crack failures continually occur in shafts of turbine generator, where grid disturbance is an important cause. To estimate influences of grid disturbance, coupled torsional vibration and fatigue damage of turbine generator shafts are analyzed in this work, with a case study in a 600MW steam unit in China. The analysis is the following: (i) coupled system is established with generator model and finite element method (FEM)-based shafts model, where the grid disturbance is signified by fluctuation of generator outputs and the shafts model is formed with lumped mass model (LMM) and continuous mass model (CMM), respectively; (ii) fatigue damage is evaluated in the weak location of the shafts through local torque response computation, stress calculation, and fatigue accumulation; and (iii) failure-prevention approach is formed by solving the inverse problem in fatigue evaluation. The results indicate that the proposed scheme with continuous mass model can acquire more detailed and accurate local responses throughout the shafts compared with the scheme without coupled effects or the scheme using lumped mass model. Using the coupled torsional vibration scheme, fatigue damage caused by grid disturbance is evaluated and failure prevention rule is formed.


2015 ◽  
Vol 740 ◽  
pp. 466-469
Author(s):  
Xue Hua Jiang

High Voltage Direct Current (HVDC) system was often the link between major power grids. In order to ensure the safe operation of HVDC, fault diagnosis method was studied. The system structure of HVDC Light system was analyzed, and the normal and fault conditions of the transmission system were simulated in the Matlab platform. This method was very convenient and simple, and it could restore the real situation. The use of simulated waveform could effectively identify the fault types of actual situation, and then it was a flexible, efficient and practical method of fault diagnosis in HVDC Light system.


Author(s):  
Qiaobin Liu ◽  
Wenku Shi ◽  
Zhiyong Chen

The unbalanced excitation force and torque generated by an engine that resonate with the natural frequency of drivetrain often causes vibration and noise problems in vehicles. This study aims to comprehensively employ theoretical modelling and experimental identification methods to obtain the fluctuation coefficients of engine excitation torque when a car is in different gear positions. The inherent characteristics of the system are studied on the basis of the four-degree-of-freedom driveline lumped mass model and the longitudinal dynamics model of vehicle. The correctness of the model is verified by torsional vibration test. The second order's engine torque fluctuation coefficients are identified by firefly algorithm according to the curves of flywheel speed in different gears under the acceleration condition of the whole open throttle. The torque obtained by parameter identification is applied to the model, and the torsional vibration response of the system is analysed. The influence of the key parameters on the torsional vibration response of the system is investigated. The study concludes that proper reduction of clutch stiffness can increase clutch damping and half-axle rigidity, which can help improve the torsional vibration performance of the system. This study can provide reference for vehicle drivetrain modelling and torsional vibration control.


Sign in / Sign up

Export Citation Format

Share Document