scholarly journals Nonlinear Torsional Vibration Analysis and Control of Semidirect Electromechanical Coupling Transmission System in Shearer

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Song Jiang ◽  
Wei Li ◽  
Lianchao Sheng ◽  
Jiajun Chen ◽  
Min Li

The nonlinear torsional vibration and instability oscillation caused by nonlinear damping in the shearer electromechanical coupling cutting transmission system in shearer driven by the permanent magnet synchronous motor (PMSM) is investigated in this paper. The electromechanical coupling transmission system in the shearer is equivalent to a concentrated mass model for the purpose of establishing the system dynamic model by the Lagrange–Maxwell equation. Then, the Routh–Hurwitz criterion is used to determine the torsional vibration critical point and stability region for the Hopf bifurcation for the cutting transmission system. According to the Routh–Hurwitz stability criterion, the Hopf bifurcation type and the effect of the supercritical Hopf bifurcation in the torsional vibration of the cutting transmission system are analyzed. Furthermore, based on the washout filter, the Hopf bifurcation controller is designed for suppressing the transmission system’s large vibration amplitude and unstable oscillation. In addition, the influences of the linear gain and nonlinear gain on the bifurcation point and the limit cycle amplitude are discussed. Finally, the numerical simulation results indicate the effectiveness of the designed controller. The research achievements can provide a theoretical basis for design or optimize the cutting transmission system of high-reliability shearer driven by PMSM.

2011 ◽  
Vol 52-54 ◽  
pp. 1375-1381
Author(s):  
Wei Zhou ◽  
Li Hong Lin ◽  
Xiao An Chen

Electromechanical coupling effect must be considered in the dynamic analysis of permanent magnet AC servo-driven precision gear transmission system. According to the global coupling and local coupling analysis in servo-driven system, the global electromechanical coupling relation diagram of whole system and the local electromechanical coupling relation diagram of the permanent magnet synchronous motor-precision gear transmission subsystem are established. For this subsystem, a physical model is built up. And a mathematical model is constituted by using Lagrange-Maxwell equation, that is the dynamic equation of the subsystem. The mathematical model can provide theoretical basis for follow-up researches.


Author(s):  
Lianchao Sheng ◽  
Wei Li ◽  
Yuqiao Wang ◽  
Mengbao Fan ◽  
Xuefeng Yang

The operation environment of an electromechanical coupling transmission system in shearers is significantly harsher than that of electromechanical coupling transmission system for general applications. Besides, under the combined action of electrical and mechanical factors, unstable phenomenon may appear when the complicated dynamic behaviors of electromechanical coupling transmission system of a shearer occur such as bifurcation and chaos. Therefore, to solve this problem, the stability, bifurcation, and chaotic characters of electromechanical coupling transmission system with various electromagnetism stiffnesses are investigated in this paper. Then, the nonlinear dynamic equation of electromechanical coupling transmission system of a shearer is set up by taking both air-gap field energy of permanent magnet synchronous motor and coupling impact of mechanical and electrical parameters. According to the established equations, the equilibrium point and eigenvalue of the system are discussed. Meanwhile, the parameters conditions of the system Hopf bifurcation and chaotic motion are analyzed, and the homoclinic orbit of the system is determined. The results show that bifurcation and chaotic motion can be controlled effectively when reasonable parameters are concerned, which is of great practical significance to further study the vibration of the mechanical-electromagnetic coupling transmission system and the improvement of system stability.


2012 ◽  
Vol 19 (6) ◽  
pp. 1223-1233 ◽  
Author(s):  
Ling Xiang ◽  
Shixi Yang ◽  
Chunbiao Gan

Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-βmethod. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-βmethod, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.


Author(s):  
Jinyong Ju ◽  
Wei Li ◽  
Yufei Liu ◽  
Chunrui Zhang

Aiming to the torsional vibration destabilization phenomenon of the wheel-side transmission system direct-driven by the high-power motor, the system torsional vibration bifurcation characteristics and control strategy are analyzed. Through defining the system electromechanical coupling relationship between the electrical link and the mechanical link, the dynamic model of the wheel-side direct-driven transmission system is constructed. Then, based on the Routh–Hurwitz stability criterion, the system Hopf bifurcation characteristics caused by the change of the wheel-ground friction during driving are revealed. Furthermore, with the nonlinear feedback controller and the Washout filter combined, the system torsional vibration stabilization controller is constructed by introducing the system torsional vibration signals into the motor control voltage. The results show that the linear part of the torsional vibration stabilization controller can effectively change the system stability region, as well as the cubic nonlinear part of the torsional vibration stabilization controller can control the stability of the system bifurcation points and suppress the limit cycle amplitude. The research results can provide theoretical basis and technical support for the performance improvement and integrated application of the wheel-side direct-driven transmission system in the electric bus.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1292
Author(s):  
Hanying Gao ◽  
Guoqiang Zhang ◽  
Wenxue Wang ◽  
Xuechen Liu

The six-phase motor control system has low torque ripple, low harmonic content, and high reliability; therefore, it is suitable for electric vehicles, aerospace, and other applications requiring high power output and reliability. This study presents a superior sensorless control system for a six-phase permanent magnet synchronous motor (PMSM). The mathematical model of a PMSM in a stationary coordinate system is presented. The information of motor speed and position is obtained by using a sliding mode observer (SMO). As torque ripple and harmonic components affect the back electromotive force (BEMF) estimated value through the traditional SMO, the function of the frequency-variable tracker of the stator current (FVTSC) is used instead of the traditional switching function. By improving the SMO method, the BEMF is estimated independently, and its precision is maintained under startup or variable-speed states. In order to improve the estimation accuracy and resistance ability of the observer, the rotor position error was taken as the disturbance term, and the third-order extended state observer (ESO) was constructed to estimate the rotational speed and rotor position through the motor mechanical motion equation. Finally, the effectiveness of the method is verified by simulation and experiment results. The proposed control strategy can effectively improve the dynamic and static performance of PMSM.


2012 ◽  
Vol 490-495 ◽  
pp. 2210-2214
Author(s):  
Ming Hui Li ◽  
Zheng Qi Li

According to the all-electric injection molding machine control system requirements, the vector control applied to the permanent magnet synchronous motor control, we propose a fully electric injection molding machine control system design, through analysis and research that can further improve the program precise all-electric injection molding machine control, its stability, high reliability, to better meet the all-electric injection molding machine of precision and stability requirements.


Author(s):  
Jinghui Sun ◽  
Lee Liu ◽  
William N. Patten

Abstract The kinematics of planetary gearing are complex; thus, making it difficult to build an effective dynamic model. In this paper, a single-mass model of a planetary gear and shaft system is developed to study the torsional vibration of the mechanism. Two new models of the system are proposed: (a) a fictitious co-planar model and (b) an equivalent shaft model. The results from the calculations and analyses using these models indicate that: 1) the single-mass model and the general rotary model are both limited, either mathematically or geometrically; 2) the fictitious co-planar model includes all of the geometric and dynamic parameters of the general rotary model, and it can be connected with the shaft system easily; and 3) using a mathematical treatment, the equivalent shaft model is demonstrated to be the most useful and most effective model for the calculation of torsional vibration of a shaft and planetary gear train.


2021 ◽  
Author(s):  
Konradin Weber ◽  
Christian Fischer ◽  
Martin Lange ◽  
Tobias Pohl ◽  
Tim Kramer ◽  
...  

<p>Instrumented UAS (unmanned aerial systems, drones) can substantially enhance the capabilities for the investigation of air pollutants, when equipped with the appropriate and customized air pollution measurement systems. Important advantages can be found in the exploration of vertical and horizontal pollutant profiles as well as in the determination of fugitive emissions. The HSD Laboratory for Environmental Measurement Techniques (UMT) has developed a series of different multicopter UAS for various measurement tasks and payloads. Additionally, different commercial UAS are used by UMT. The multicopter UAS are equipped, depending on the measurement task, with different specifically adopted lightweight measurement systems for aerosols (PM10, PM2.5, PM1, UFP, PNC, number size distributions) or gases like O<sub>3</sub>, SO<sub>2</sub>, NO<sub>X</sub>, CO<sub>2</sub> and VOCs. All measurement systems were intercompared with certified standard measurement equipment before use to assure the quality of the measurement results. Moreover, physical samples of aerosols can be taken during the flight, which enables a chemical or REM analysis after the flight.</p><p>Additionally, UMT developed an on-line data transmission system, which allows the transmission of measurement data during the flights from the UAS to the ground for continuous monitoring. In this way concentration plumes can be tracked and hotspots can be pinpointed during the flight. This online data transmission system is independent of commercial platforms, can work on different radio frequencies in a push mode (presently on 2.4 GHz) and communicates with RS232 and I<sup>2</sup>C interfaces. Within several intercomparison studies this online data transmission proved a high reliability and correctness of transmitted data.</p><p>In addition to technical details of the UAS and instrumentation we present in this contribution the results of different measurement campaigns based on our UAS measurements:</p><ul><li>Investigations of emissions from the Duesseldorf airport combining upwind and downwind UAS measurements. These investigations became of special interest, as due to the reduced air traffic caused by the Corona pandemia now single aircraft starts and landings could be monitored with their emissions at elevated altitudes.</li> <li>Investigations of vertical concentration profiles above the city of Duesseldorf, which could be influenced by industrial sites in the north of Duesseldorf as well as by the Duesseldorf airport.</li> <li>Investigations of vertical and horizontal pollution distributions near, at and around industrial sites in the Rhine Ruhr area, especially of metal industry plants and chemical plants.</li> </ul><p>These examples highlight the capabilities of UAS measurements, which will be further enhanced by planned simultaneous use of several UAS in parallel and joint tasks.</p>


Sign in / Sign up

Export Citation Format

Share Document