scholarly journals Innovative Design and Performance of Three-Bed Two-Stage Adsorption Cycle under Optimized Cycle Time

2012 ◽  
Vol 7 (1) ◽  
pp. 92-108 ◽  
Author(s):  
Abul Fazal Mohammad Mizanur RAHMAN ◽  
Yuki UEDA ◽  
Atsushi AKISAWA ◽  
Takahiko MIYAZAKI ◽  
Bidyut Baran SAHA
Author(s):  
Mohammad Rizk Assaf ◽  
Abdel-Nasser Assimi

In this article, the authors investigate the enhanced two stage MMSE (TS-MMSE) equalizer in bit-interleaved coded FBMC/OQAM system which gives a tradeoff between complexity and performance, since error correcting codes limits error propagation, so this allows the equalizer to remove not only ICI but also ISI in the second stage. The proposed equalizer has shown less design complexity compared to the other MMSE equalizers. The obtained results show that the probability of error is improved where SNR gain reaches 2 dB measured at BER compared with ICI cancellation for different types of modulation schemes and ITU Vehicular B channel model. Some simulation results are provided to illustrate the effectiveness of the proposed equalizer.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 356-359
Author(s):  
A.S. UYUN ◽  
Yoshinori HAMAMOTO ◽  
K.C.A. ALAM ◽  
Atsushi AKISAWA ◽  
Akira AKAHIRA ◽  
...  

1986 ◽  
Author(s):  
W. Tabakoff ◽  
A. Hamed

Gas turbine engines operating in dusty environments are exposed to erosion and performance deterioration. In order to provide the basis for calculating the erosion and performance deterioration of turbines using pulverized coal, an investigation is undertaken to determine the three dimensional particle trajectories in a two stage turbine. The solution takes into account the influence of the variation in the three dimensional flow field. The change in particle momentum due to their collision with the turbine blades and casings is modeled using empirical equations derived from experimental Laser Doppler Velocimetry (LDV) measurements. The results show the three dimensional trajectory characteristics of the solid particles relative to the turbine blades. The results also show that the particle distribution in the flow field are determined by particle-blade impacts. The results obtained from this study indicate the turbine blade locations which are subjected to more blade impacts and hence more erosion damage.


2004 ◽  
Vol 50 (8) ◽  
pp. 135-143 ◽  
Author(s):  
S. Chinwetkitvanich ◽  
C.W. Randall ◽  
T. Panswad

The study was designed to investigate the effects of temperature and phosphorus limitation on polyhydroxyalkanoate (PHA) production and storage by activated sludge biomass. The two-stage operation approach, i.e. a growth phase followed by a nutrient limitation phase, was applied to induce PHA accumulation. The pre-selected temperatures of 10, 20 and 30°C were investigated under phosphorus limitation conditions using three four-litre fully aerobic SBR systems operated at an SRT of 10 days with cycle time and HRT of 6 and 10 hours. PHA production was greater in the 10°C system than in the 20°C and 30°C systems but there was little difference between the two higher temperatures. The maximum PHA fractions of the sludge were 52, 45 and 47%TSS for the three temperatures from low to high, and the maximum PHA concentrations in the mixed liquors were 1,491, 1,294 and 1,260 mg/l, respectively. However, it was observed that very low values of PHA yield per unit COD consumed were obtained, i.e., 0.05, 0.03 and 0.04 mgPHA/mgCODu, for the 10, 20 and 30°C reactors, respectively. This was because all three systems required several days to reach maximum PHA accumulation in their mixed liquor biomasses. It is probable the bacteria still had some stored poly-P in their cells upon initiation of the phosphorus limited influent, and PHA accumulation was delayed until the stored phosphorus was depleted. Also, PHA productivity was reduced by the large amounts of biomass lost from the systems because of sludge bulking.


2020 ◽  
Vol 11 (2) ◽  
pp. 37 ◽  
Author(s):  
Daouda Mande ◽  
João Pedro Trovão ◽  
Minh Cao Ta

Power electronics play a fundamental role for electric transportation, renewable energy conversion and many other industrial applications. They have the ability to help achieve high efficiency and performance in power systems. However, traditional inverters such as voltage source and current source inverters present some limitations. Consequently, many research efforts have been focused on developing new power electronics converters suitable for many applications. Compared with the conventional two-stage inverter, Z-source inverter (ZSI) is a single-stage converter with lower design cost and high efficiency. It is a power electronics circuit of which the function is to convert DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. Recently, ZSIs have been widely used as a replacement for conventional two-stage inverters in the distributed generation systems. Several modifications have been carried out on ZSI to improve its performance and efficiency. This paper reviews the-state-of-art impedance source inverter main topologies and points out their applications for multisource electric vehicles. A concise review of main existing topologies is presented. The basic structural differences, advantages and limitations of each topology are illustrated. From this state-of-the-art review of impedance source inverters, the embedded quasi-Z-source inverter presents one of the promising architectures which can be used in multisource electric vehicles, with better performance and reliability. The utilization of this new topology will open the door to several development axes, with great impact on electric vehicles (EVs).


2012 ◽  
Vol 49 ◽  
pp. 93-103 ◽  
Author(s):  
Wenlong Wang ◽  
Jingqing Gao ◽  
Xiao Guo ◽  
Wenchao Li ◽  
Xinyuan Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document