scholarly journals Motion of Air Bubbles in Mineral Oils Subject to Sudden Change in Chamber Pressure : 1st Report, Experimental Analysis of Single Spherical Bubbles

1980 ◽  
Vol 23 (181) ◽  
pp. 1132-1139 ◽  
Author(s):  
Tomio IDA ◽  
Tsuneya SUGIYA
Soil Research ◽  
1969 ◽  
Vol 7 (2) ◽  
pp. 79 ◽  
Author(s):  
AJ Peck

Air bubbles in soil water affect both hydraulic conductivity and moisture content at a given capillary potential. Consequently changes in the volume of entrapped air, which are not included in the specification of relationships between hydraulic conductivity, moisture content, and capillary potential, will affect all soil-water interactions. Current understanding of the process of air bubble entrapment during infiltration suggests that, in nature, significant air entrapment will often occur. It is shown that infiltrating water can dissolve only a very small volume of air, much less than the amount usually entrapped. Air bubbles in saturated soils are unstable since their pressure must exceed atmospheric, resulting in a diffusive flux of dissolved air from bubbles to menisci contacting the external atmosphere. However, stable bubbles are possible in unsaturated soils. Bubbles which are constrained by pore architecture to non-spherical shapes are usually stable, and spherical bubbles can be stable when the magnitude of the capillary potential exceeds about 3 bars. An approximate analysis of the characteristic time of bubble equilibration indicates that, in an example, it is of order 104 sec, but it may be greater or less by at least a factor 10. Since the equilibration time will be often at least as large as the period of significant soil temperature changes, it cannot be assumed that the entrapped air in a field soil is in an equilibrium state. In such circumstances unstable bubbles may be quasi-permanent. It is suggested that the slow growth of entrapped bubbles may account for the anomalously slow release of water observed in some outflow experiments. Changes of entrapped air volume may also account for the reported dependence of soil-water characteristics on the magnitude of the steps of capillary potential.


1981 ◽  
Vol 27 (95) ◽  
pp. 141-146 ◽  
Author(s):  
Masayoshi Nakawo ◽  
Gorow Wakahama

AbstractBiaxial compression tests on glacier ice with bubbles revealed that elongated air bubbles were developed with long axes in the direction of free expansion. The elongated bubbles were not only derived from spherical bubbles but also created by the healing of cracks that were developed during compression. Formation of elongated bubbles and foliations in natural glacier ice are discussed here in the light of results obtained experimentally.


Author(s):  
Ashley Fritz ◽  
Lisa Sekol ◽  
Jim Koroskenyi ◽  
Bill Walch ◽  
Jeff Minear ◽  
...  

The present work aims to conduct an experimental study through Design of Experiment (DOE) to develop a better understanding of the important variables and their impact during the Thermal Energy Method deburring process. The designed experiment was based on an L9 orthogonal array using Taguchi method and tests were conducted with an S-250 Kennametal-Extrude Hone machine. The variables tested were the chamber pressure, fuel to oxygen ratio, burr thickness and material type of the specimen. Based on variance analysis, the chamber pressure was found to have the largest variance value and was therefore concluded to have the largest impact on the deburring process. A linear regression model was developed from the experiment which can help predict the deburring outcome based on various input parameters.


1981 ◽  
Vol 27 (95) ◽  
pp. 141-146
Author(s):  
Masayoshi Nakawo ◽  
Gorow Wakahama

AbstractBiaxial compression tests on glacier ice with bubbles revealed that elongated air bubbles were developed with long axes in the direction of free expansion. The elongated bubbles were not only derived from spherical bubbles but also created by the healing of cracks that were developed during compression. Formation of elongated bubbles and foliations in natural glacier ice are discussed here in the light of results obtained experimentally.


Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


Author(s):  
H.-J. Ou ◽  
J. M. Cowley ◽  
A. A. Higgs

A scanning ion gun system has been installed on the specimen preparation chamber (pressure ∼5xl0-8 torr) of the VG-HB5 STEM microscope. By using the specimen current imaging technique, it is possible to use an ion beam to sputter-clean the preferred surface region on a bulk sample. As shown in figure 1, the X-Y raster-gate control of the scanning unit for the Krato Mini-Beam I is used to minimize the beam raster area down to a 800μm x800μm square region. With beam energy of 2.5KeV, the MgO cleavage surface has been ion sputter-cleaned for less than 1 minute. The carbon film or other contaminant, introduced during the cleavage process in air, is mostly removed from the MgO crystal surfaces.The immediate SREM inspection of this as-cleaned MgO surface, within the adjacent STEM microscope, has revealed the detailed surface structures of atomic steps, which were difficult to observe on the as-cleaved MgO surfaces in the previous studies.


Author(s):  
J C Walmsley ◽  
A R Lang

Interest in the defects and impurities in natural diamond, which are found in even the most perfect stone, is driven by the fact that diamond growth occurs at a depth of over 120Km. They display characteristics associated with their origin and their journey through the mantle to the surface of the Earth. An optical classification scheme for diamond exists based largely on the presence and segregation of nitrogen. For example type Ia, which includes 98% of all natural diamonds, contain nitrogen aggregated into small non-paramagnetic clusters and usually contain sub-micrometre platelet defects on {100} planes. Numerous transmission electron microscope (TEM) studies of these platelets and associated features have been made e.g. . Some diamonds, however, contain imperfections and impurities that place them outside this main classification scheme. Two such types are described.First, coated-diamonds which possess gem quality cores enclosed by a rind that is rich in submicrometre sized mineral inclusions. The transition from core to coat is quite sharp indicating a sudden change in growth conditions, Figure 1. As part of a TEM study of the inclusions apatite has been identified as a major constituent of the impurity present in many inclusion cavities, Figure 2.


Sign in / Sign up

Export Citation Format

Share Document