scholarly journals Landcover Change, Land Surface Temperature, Surface Albedo and Topography in the Plateau Region of North-Central Nigeria

Land ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 300-324 ◽  
Author(s):  
Shakirudeen Odunuga ◽  
Gbolahan Badru
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chunlei Meng ◽  
Huoqing Li

AbstractFengyun-4A is the new generation of Chinese geostationary meteorological satellites. Land surface albedo, land surface emissivity and land surface temperature are key states for land surface modelling. In this paper, the land surface albedo, land surface emissivity and land surface temperature data from Fengyun-4A were assimilated into the Integrated Urban land Model. The Fengyun-4A data are one of the data sources for the land data assimilation system which devoted to produce the high spatial and temporal resolution, multiple parameters near real-time land data sets. The Moderate-Resolution Imaging Spectroradiometer (MODIS) LSA and LSE data, the Institute of Atmospheric Physics, China Academy of Sciences (IAP) 325 m tower observation data and the observed 5 cm and 10 cm soil temperature data in more than 100 sites are used for validation. The results indicate the MODIS land surface albedo is much smaller than the Fengyun-4A and is superior to the Fengyun-4A for the Institute of Atmospheric Physics, China Academy of Sciences 325 m tower site. The Moderate-Resolution Imaging Spectroradiometer land surface emissivity is smaller than the Fengyun-4A in barren land surface and the differences is relatively small for other land use and land cover categories. In most regions of the research area, the Fengyun-4A land surface albedo and land surface emissivity are larger than those of the simulations. After the land surface albedo assimilation, in most regions the simulated net radiation was decreased. After the land surface emissivity assimilation, in most regions the simulated net radiation was increased. After the land surface temperature assimilation, the biases of the land surface temperature were decreased apparently; the biases of the daily average 5 cm and 10 cm soil temperature were decreased.


2012 ◽  
Vol 518-523 ◽  
pp. 5830-5834
Author(s):  
Wu Jun Xi ◽  
Ping He ◽  
Wang Zhou Yang

The paper used split window algorithm to research land surface temperature retrieval in Chuxiong prefecture with MODIS image in 2008, the results showed that: land surface temperature of the north, central and southeast was higher, temperature of the east and west are low, especially northwest. Yuanmou county, Shuangbai county and Yongren county were in the top three of land surface maximum temperature in Chuxiong prefecture on January 12th, 2008. Lufeng county, Yuanmou county and Yongren county were in the top three of land surface mean temperature.


2012 ◽  
Vol 21 (3) ◽  
pp. 243 ◽  
Author(s):  
Sander Veraverbeke ◽  
Willem W. Verstraeten ◽  
Stefaan Lhermitte ◽  
Ruben Van De Kerchove ◽  
Rudi Goossens

This study evaluates the effects of the large 2007 Peloponnese (Greece) wildfires on changes in broadband surface albedo (α), daytime land surface temperature (LSTd) and night-time LST (LSTn) using a 2-year post-fire time series of Moderate Resolution Imaging Spectroradiometer satellite data. In addition, it assesses the potential of remotely sensed α and LST as indicators for fire–burn severity. Immediately after the fire event, mean α dropped up to 0.039 (standard deviation = 0.012) (P < 0.001), mean LSTd increased up to 8.4 (3.0) K (P < 0.001), and mean LSTn decreased up to –1.2 (1.5) K (P < 0.001) for high-severity plots (P < 0.001). After this initial alteration, fire-induced changes become clearly smaller and seasonality starts governing the α and LST time series. Compared with the fire-induced changes in α and LST, the post-fire NDVI drop was more persistent in time. This temporal constraint restricts the utility of remotely sensed α and LST as indicators for fire–burn severity. For the times when changes in α and LST were significant, the magnitude of changes was related to fire–burn severity, revealing the importance of vegetation as a regulator of land surface energy fluxes.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
X. Zhou ◽  
H. Matthes ◽  
A. Rinke ◽  
K. Klehmet ◽  
B. Heim ◽  
...  

This paper evaluates the simulated Arctic land snow cover duration, snow water equivalent, snow cover fraction, surface albedo, and land surface temperature in the regional climate model HIRHAM5 during 2008–2010, compared with various satellite and reanalysis data and one further regional climate model (COSMO-CLM). HIRHAM5 shows a general agreement in the spatial patterns and annual course of these variables, although distinct biases for specific regions and months are obvious. The most prominent biases occur for east Siberian deciduous forest albedo, which is overestimated in the simulation for snow covered conditions in spring. This may be caused by the simplified albedo parameterization (e.g., nonconsideration of different forest types and neglecting the effect of fallen leaves and branches on snow for deciduous tree forest). The land surface temperature biases mirror the albedo biases in their spatial and temporal structures. The snow cover fraction and albedo biases can explain the simulated land surface temperature bias of ca. −3°C over the Siberian forest area in spring.


Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012021
Author(s):  
Nasrullah Zaini ◽  
Muhammad Yanis ◽  
Marwan ◽  
Muhammad Isa ◽  
Freek van der Meer

Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Yixu Wang ◽  
Mingxue Xu ◽  
Jun Li ◽  
Nan Jiang ◽  
Dongchuan Wang ◽  
...  

Although research relating to the urban heat island (UHI) phenomenon has been significantly increasing in recent years, there is still a lack of a continuous and clear recognition of the potential gradient effect on the UHI—landscape relationship within large urbanized regions. In this study, we chose the Beijing-Tianjin-Hebei (BTH) region, which is a large scaled urban agglomeration in China, as the case study area. We examined the causal relationship between the LST variation and underlying surface characteristics using multi-temporal land cover and summer average land surface temperature (LST) data as the analyzed variables. This study then further discussed the modeling performance when quantifying their relationship from a spatial gradient perspective (the grid size ranged from 6 to 24 km), by comparing the ordinary least squares (OLS) and geographically weighted regression (GWR) methods. The results indicate that: (1) both the OLS and GWR analysis confirmed that the composition of built-up land contributes as an essential factor that is responsible for the UHI phenomenon in a large urban agglomeration region; (2) for the OLS, the modeled relationship between the LST and its drive factor showed a significant spatial gradient effect, changing with different spatial analysis grids; and, (3) in contrast, using the GWR model revealed a considerably robust and better performance for accommodating the spatial non-stationarity with a lower scale dependence than that of the OLS model. This study highlights the significant spatial heterogeneity that is related to the UHI effect in large-extent urban agglomeration areas, and it suggests that the potential gradient effect and uncertainty induced by different spatial scale and methodology usage should be considered when modeling the UHI effect with urbanization. This would supplement current UHI study and be beneficial for deepening the cognition and enlightenment of landscape planning for UHI regulation.


Sign in / Sign up

Export Citation Format

Share Document