1113 On the Mechanism of Wall Shear Stress Production in a Two-dimensional Small Channel

2012 ◽  
Vol 2012.50 (0) ◽  
pp. 111301-111302
Author(s):  
Takuma KIKUCHI ◽  
Shinsuke MOCHIZUKI ◽  
Takatugu KAMEDA
Author(s):  
Brett Freidkes ◽  
David A. Mills ◽  
Casey Keane ◽  
Lawrence S. Ukeiley ◽  
Mark Sheplak

2008 ◽  
Vol 33-37 ◽  
pp. 1031-1036
Author(s):  
Yoko Takakura ◽  
Gulbahar Wahap ◽  
Norio Arai ◽  
Yoshifumi Konishi ◽  
Kazuaki Fukasaku

Recently for the treatment of aneurysms, endovascular therapy with microcoils and stents has started. This study explores the design of better stents by means of numerical computations from the viewpoint of the fluid mechanics. Two-dimensional flows are numerically solved for a stented duct with a model of an aneurysmal sac by changing the distribution of stent filaments under the constraint of a constant porosity for the neck. Stents are assessed by whether the wall shear stress (WSS) on the aneurismal wall and the shear rate (SR) within the aneurysm are made lower. Barometers for the allocation of filaments are sought, and resultant optimized stents are those where filament(s) should be attached to both the distal and proximal wall of the neck, with more filaments to the distal wall, to make the WSS low, and filaments should be appropriately distributed in the off-wall portion of the neck to make the SR low.


1988 ◽  
Vol 110 (2) ◽  
pp. 373-377 ◽  
Author(s):  
N. Ramachandran ◽  
T. S. Chen ◽  
B. F. Armaly

Laminar mixed convection in two-dimensional stagnation flows around heated surfaces is analyzed for both cases of an arbitrary wall temperature and arbitrary surface heat flux variations. The two-dimensional Navier–Stokes equations and the energy equation governing the flow and thermal fields are reduced to a dimensionless form by appropriate transformations and the resulting system of ordinary differential equations is solved in the buoyancy assisting and opposing regions. Numerical results are obtained for the special cases for which locally similar solutions exist as a function of the buoyancy parameter. Local wall shear stress and heat transfer rates as well as velocity and temperature distributions are presented. It is found that the local Nusselt number and wall shear stress increase as the value of the buoyancy parameter increases in the buoyancy assisting flow region. A reverse flow region develops in the buoyancy opposing flow region, and dual solutions are found to exist in that flow regime for a certain range of the buoyancy parameter.


Optics ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 40-51
Author(s):  
Esther Mäteling ◽  
Michael Klaas ◽  
Wolfgang Schröder

An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity field in the outer flow. The extended experimental setup, which involves a modified MPS 3 measurement setup and data evaluation compared to the standard method, is presented and used to investigate the footprint of the outer, large-scale motions (LSM) onto the near-wall small-scale motions. The measurements were performed in a fully developed, turbulent channel flow at a friction Reynolds number R e τ = 969 . A separation between large and small scales of the velocity fluctuations and the WSS fluctuations was performed by two-dimensional empirical mode decomposition. A subsequent cross-correlation analysis between the large-scale velocity fluctuations and the large-scale WSS fluctuations shows that the streamwise inclination angle between the LSM in the outer layer and the large-scale footprint imposed onto the near-wall dynamics has a mean value of Θ ¯ x = 16.53 ∘ , which is consistent with the literature relying on direct numerical simulations and hot-wire anemometry data. When also considering the spatial shift in the spanwise direction, the mean inclination angle reduces to Θ ¯ x z = 13.92 ∘ .


2011 ◽  
Vol 705 ◽  
pp. 258-279 ◽  
Author(s):  
Parsa Zamankhan ◽  
Brian T. Helenbrook ◽  
Shuichi Takayama ◽  
James B. Grotberg

AbstractWe study numerically the steady creeping motion of Bingham liquid plugs in two-dimensional channels as a model of mucus behaviour during airway reopening in pulmonary airways. In addition to flow analysis related to propagation of the plug, the stress distribution on the wall is studied for better understanding of potential airway epithelial cell injury mechanisms. The yield stress behaviour of the fluid was implemented through a regularized constitutive equation. The capillary number, $\mathit{Ca}$, and the Bingham number, $\mathit{Bn}$, which is the ratio of the yield stress to a characteristic viscous stress, varied over the ranges 0.025–0.1 and 0–1.5, respectively. For the range of parameters studied, it was found that, while the yield stress reduces the magnitude of the shearing along the wall, it can magnify the amplitude of the wall shear stress gradient significantly, and also it can elevate the magnitude of the wall shear stress and wall pressure gradient up to 30 % and 15 %, respectively. Therefore, the motion of mucus plugs can be more damaging to the airway epithelial cells due to the yield stress properties of mucus. The yield stress also modifies the profile of the plug where the amplitude of the capillary waves at the leading meniscus decreases with increase in $\mathit{Bn}$. Other findings are that: the thickness of the static film increases with increasing $\mathit{Bn}$; the driving pressure difference increases linearly with $\mathit{Bn}$; and increasing $\mathit{Bn}$ extends any wall stagnation point beneath the leading meniscus to an unyielded line segment beneath the leading meniscus. With an increase in $\mathit{Bn}$, the unyielded areas appear and grow in the adjacent wall film as well as the core region of the plug between the two menisci. The plug length, ${L}_{P} $, mostly modifies the topology of the yield surfaces. It was found that the unyielded area in the core region between the two menisci grows as the plug length decreases. The very short Bingham plug behaves like a solid lamella. In all computed liquid plugs moving steadily, the von Mises stress attains its maximum value near the interface of the leading meniscus in the transition region. For Bingham plugs moving very slowly, $\mathit{Ca}\ensuremath{\rightarrow} 0$, the driving pressure is non-zero.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenyun Huang ◽  
Honglu Yun ◽  
Wenchao Huang ◽  
Bin Zhang ◽  
Xujian Lyu

As an inevitable trend for the sustainable development of the global economy, saving energy and reducing emissions are key goals for the entire world. The use of air bubbles to reduce viscous friction is one of the most effective approaches to achieve this goal, as it may significantly reduce the frictional drag of ships. However, the injection of air bubbles will change flow characteristics near the wall due to the significant differences in density and viscosity between air and water. In addition, parameters such as bubble size, bubble surface tension, bubble number and bubble position also affect the flow near the wall, resulting in significant diversity and instability in two-phase flow. To clarify the mechanism of these effects, a two-dimensional channel flow with air bubbles is studied using Computational Fluid Dynamics (CFD). The interactions between bubbles and water and between bubbles and wall are studied, and the detailed characteristics of bubbles moving in fully developed flow are considered. This study shows that the velocity gradient is the main factor influencing wall shear stress, and the presence of bubbles has a marked impact on the local velocity gradient distribution of the nearby flow. It is also found that shorter distance between a bubble and the wall enhances the flow interaction and leads to more significant perturbations of wall shear stress.


Sign in / Sign up

Export Citation Format

Share Document