801 3-Dimensional Analysis of Stick-slip Phenomenon at an Atomic Scale

2000 ◽  
Vol 2000 (0) ◽  
pp. 211-212
Author(s):  
Kazuyoshi URAMOTO ◽  
Jun SHIMIZU ◽  
Hiroshi EDA ◽  
Libo ZHOU
Author(s):  
Tomoya Inoue ◽  
Tokihiro Katsui ◽  
Chang-Kyu Rheem ◽  
Zengo Yoshida ◽  
Miki Y. Matsuo

Stick-slip is a major problem in offshore drilling because it may cause damage to the drill bit as well as crushing or grinding the sediment layer, which is crucial problem in scientific drilling because the purpose of the scientific drilling is to recover core samples from the layers. To mitigate stick-slip, first of all it is necessary to establish a model of the torsional motion of the drill bit and express the stick-slip phenomenon. Toward this end, the present study proposes a model of torsional waves propagating in a drillstring. An analytical model is developed and used to derive a neutral delay differential equation (NDDE), a special type of equation that requires time history, and an analytical model of stick-slip is derived for friction models between the drill bit and the layer as well as the rotation speed applied to the uppermost part of the drill string. In this study, the stick-slip model is numerically analyzed for several conditions and a time series of the bit motions is obtained. Based on the analytical results, the appearance of stick-slip and its severity are discussed. A small-scale model experiment was conducted in a water tank to observe the stick-slip phenomenon, and the result is discussed with numerical analysis. In addition, utilizing surface drilling data acquired from the actual drilling operations of the scientific drillship Chikyu, occurrence of stick-slip phenomenon is discussed.


2006 ◽  
Author(s):  
Sergi Gallego ◽  
Manuel F. Ortuño ◽  
Cristian Neipp ◽  
Andrés Márquez ◽  
Augusto Beléndez ◽  
...  

2011 ◽  
Vol 84 (11) ◽  
Author(s):  
I. Barel ◽  
M. Urbakh ◽  
L. Jansen ◽  
A. Schirmeisen
Keyword(s):  

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghong Fu ◽  
Jie Yang ◽  
Hao Wang ◽  
Yuyang He

Purpose This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway. Design/methodology/approach In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces. Findings Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs. Originality/value The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.


Sign in / Sign up

Export Citation Format

Share Document