The clarification of low friction mechanism in oil lubrication for B-DLC coating by in-situ observation of friction area

Author(s):  
Tatsuya OKAMOTO ◽  
Hidenori NISHIMURA ◽  
Noritsugu UMEHARA ◽  
Motoyuki MURASHIMA ◽  
Takayuki TOKOROYAMA
2020 ◽  
Vol 2020 (0) ◽  
pp. S11504
Author(s):  
Naoya HASHIZUME ◽  
Noritsugu UMEHARA ◽  
Takayuki TOKOROYAMA ◽  
Motoyuki MURASHIMA

2009 ◽  
Vol 618-619 ◽  
pp. 617-620 ◽  
Author(s):  
Ma Qian ◽  
Katsuyoshi Kondoh ◽  
Damon Kent ◽  
Junko Umeda ◽  
Peng Yu ◽  
...  

Recent breakthroughs in the sintering of aluminium alloys under nitrogen have opened the way for the in-situ fabrication of Al-AlN composites in a controllable and reproducible fashion over a wide range of volume fractions of AlN. This work reviews the fundamentals for the in-situ fabrication of the Al-AlN composites from metal powders and highlights their technical potential for niche applications because of their excellent resistance to cavitation erosion in water and their unusually low friction coefficient under oil lubrication.


2019 ◽  
Vol 804 ◽  
pp. 69-74
Author(s):  
Bei Bei Han ◽  
Dong Ying Ju ◽  
Susumu Sato ◽  
Hui Jun Zhao

In this study, DLC films were deposited using IBED with various CH4/H2 ratio, gas flow rates and accelerating voltages. The composition and mechanical properties of the DLC coatings were characterized using SEM, Raman spectroscopy and nanoindentor. The tribological properties of the coating were also investigated using a frictional surface microscope with an in situ observation system and friction force measurements. The DLC films were characterized by a lower ID/IG, higher hardness, and improved tribological properties when deposited at a lower accelerating voltage (6 kV). At the CH4/H2 ratio of 1:99 and 6 sccm/6 kV, minimum ID/IG values of 0.62, relatively low friction coefficient of 0.12 , and a maximum hardness of 4056 HV were attained respectively.


2021 ◽  
Vol 16 (1) ◽  
pp. 49-58
Author(s):  
Tatsuya Okamoto ◽  
Noritsugu Umehara ◽  
Motoyuki Murashima ◽  
Koji Saito ◽  
Kazuyoshi Manabe ◽  
...  

Author(s):  
R. T. K. Baker ◽  
R. D. Sherwood

The catalytic gasification of carbon at high temperature by microscopic size metal particles is of fundamental importance to removal of coke deposits and conversion of refractory hydrocarbons into fuels and chemicals. The reaction of metal/carbon/gas systems can be observed by controlled atmosphere electron microscopy (CAEM) in an 100 KV conventional transmission microscope. In the JEOL gas reaction stage model AGl (Fig. 1) the specimen is positioned over a hole, 200μm diameter, in a platinum heater strip, and is interposed between two apertures, 75μm diameter. The control gas flows across the specimen and exits through these apertures into the specimen chamber. The gas is further confined by two apertures, one in the condenser and one in the objective lens pole pieces, and removed by an auxiliary vacuum pump. The reaction zone is <1 mm thick and is maintained at gas pressure up to 400 Torr and temperature up to 1300<C as measured by a Pt-Pt/Rh 13% thermocouple. Reaction events are observed and recorded on videotape by using a Philips phosphor-television camera located below a hole in the center of the viewing screen. The overall resolution is greater than 2.5 nm.


Author(s):  
R-R. Lee

Partially-stabilized ZrO2 (PSZ) ceramics have considerable potential for advanced structural applications because of their high strength and toughness. These properties derive from small tetragonal ZrO2 (t-ZrO2) precipitates in a cubic (c) ZrO2 matrix, which transform martensitically to monoclinic (m) symmetry under applied stresses. The kinetics of the martensitic transformation is believed to be nucleation controlled and the nucleation is always stress induced. In situ observation of the martensitic transformation using transmission electron microscopy provides considerable information about the nucleation and growth aspects of the transformation.


Author(s):  
S. Hagège ◽  
U. Dahmen ◽  
E. Johnson ◽  
A. Johansen ◽  
V.S. Tuboltsev

Small particles of a low-melting phase embedded in a solid matrix with a higher melting point offer the possibility of studying the mechanisms of melting and solidification directly by in-situ observation in a transmission electron microscope. Previous studies of Pb, Cd and other low-melting inclusions embedded in an Al matrix have shown well-defined orientation relationships, strongly faceted shapes, and an unusual size-dependent superheating before melting.[e.g. 1,2].In the present study we have examined the shapes and thermal behavior of eutectic Pb-Cd inclusions in Al. Pb and Cd form a simple eutectic system with each other, but both elements are insoluble in solid Al. Ternary alloys of Al (Pb,Cd) were prepared from high purity elements by melt spinning or by sequential ion implantation of the two alloying additions to achieve a total alloying addition of up to lat%. TEM observations were made using a heating stage in a 200kV electron microscope equipped with a video system for recording dynamic behavior.


Sign in / Sign up

Export Citation Format

Share Document