J051052 tudy on the Tip Leakage Flow in Linear Compressor Cascade : Effects of Blade Tip Clearance and Tip Velocity)

2011 ◽  
Vol 2011 (0) ◽  
pp. _J051052-1-_J051052-4
Author(s):  
Kazunari MATSUDA ◽  
Kenichi FUNAZAKI ◽  
Hideo TANIGUCHI ◽  
Hiromasa KATO ◽  
Masafumi KUMAGAI ◽  
...  
1993 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0 and 3.25 percent of chord at design and off-design flow conditions. Data, velocity and pressures, are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


2014 ◽  
Vol 599-601 ◽  
pp. 368-371
Author(s):  
Zhi Hui Xu ◽  
He Bin Lv ◽  
Ru Bin Zhao

Using blade tip winglet to control the tip leakage flow has been concerned in the field of turbomachinery. Computational simulation was conducted to investigate the phenomenological features of tip clearance flow. The simulation results show that suction-side winglet can reduce leakage flow intensity. The tip winglet can also decrease tip leakage mass flow and weaken tip leakage flow mixing with the mainstream and therefore reduce the total pressure loss at the blade tip.


1994 ◽  
Vol 116 (4) ◽  
pp. 657-664 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0, and 3.25 percent of chord at design and off-design flow conditions. Velocity and pressure data are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2004 ◽  
Vol 128 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Nicole L. Key ◽  
Tony Arts

The tip leakage flow characteristics for flat and squealer turbine tip geometries are studied in the von Karman Institute Isentropic Light Piston Compression Tube facility, CT-2, at different Reynolds and Mach number conditions for a fixed value of the tip gap in a nonrotating, linear cascade arrangement. To the best knowledge of the authors, these are among the very few high-speed tip flow data for the flat tip and squealer tip geometries. Oil flow visualizations and static pressure measurements on the blade tip, blade surface, and corresponding endwall provide insight to the structure of the two different tip flows. Aerodynamic losses are measured for the different tip arrangements, also. The squealer tip provides a significant decrease in velocity through the tip gap with respect to the flat tip blade. For the flat tip, an increase in Reynolds number causes an increase in tip velocity levels, but the squealer tip is relatively insensitive to changes in Reynolds number.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8369
Author(s):  
Xiangyi Chen ◽  
Björn Koppe ◽  
Martin Lange ◽  
Wuli Chu ◽  
Ronald Mailach

When a compressor is throttled to the near stall point, rotating instability (RI) is often observed as significant increases of amplitude within a narrow frequency band which can be regarded as a pre-stall disturbance. In the current study, a single compressor rotor row with varying blade tip clearance (1.3%, 2.6% and 4.3% chord length) was numerically simulated using the zonal large eddy simulation model. The mesh with six blade passages was selected to capture the proper dynamic feature after being validated in comparison to the measured data, and the dynamic mode decomposition (DMD) approach was applied to the numerical temporal snapshots. In the experimental results, RIs are detected in the configurations with middle and large tip gaps (2.6% and 4.3% chord length), and the corresponding characterized frequencies are about 1/2 and 1/3 of the blade passing frequency, respectively. Simulations provide remarkable performance in capturing the measured flow features, and the DMD modes corresponding to the featured RI frequencies are successfully extracted and then visualized. The analysis of DMD results indicates that RI is essentially a presentation of the pressure wave propagating over the blade tip region. The tip leakage vortex stretches to the front part of the adjacent blade and consequently triggers the flow perturbations (waves). The wave influences the pressure distribution, which, in turn, determines the tip leakage flow and finally forms a loop.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
H. Maral ◽  
C. B. Şenel ◽  
K. Deveci ◽  
E. Alpman ◽  
L. Kavurmacıoğlu ◽  
...  

Abstract Tip clearance is a crucial aspect of turbomachines in terms of aerodynamic and thermal performance. A gap between the blade tip surface and the stationary casing must be maintained to allow the relative motion of the blade. The leakage flow through the tip gap measurably reduces turbine performance and causes high thermal loads near the blade tip region. Several studies focused on the tip leakage flow to clarify the flow-physics in the past. The “squealer” design is one of the most common designs to reduce the adverse effects of tip leakage flow. In this paper, a genetic-algorithm-based optimization approach was applied to the conventional squealer tip design to enhance aerothermal performance. A multi-objective optimization method integrated with a meta-model was utilized to determine the optimum squealer geometry. Squealer height and width represent the design parameters which are aimed to be optimized. The objective functions for the genetic-algorithm-based optimization are the total pressure loss coefficient and Nusselt number calculated over the blade tip surface. The initial database is then enlarged iteratively using a coarse-to-fine approach to improve the prediction capability of the meta-models used. The procedure ends once the prediction errors are smaller than a prescribed level. This study indicates that squealer height and width have complex effects on the aerothermal performance, and optimization study allows to determine the optimum squealer dimensions.


Sign in / Sign up

Export Citation Format

Share Document