scholarly journals Rotating Instabilities in a Low-Speed Single Compressor Rotor Row with Varying Blade Tip Clearance

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8369
Author(s):  
Xiangyi Chen ◽  
Björn Koppe ◽  
Martin Lange ◽  
Wuli Chu ◽  
Ronald Mailach

When a compressor is throttled to the near stall point, rotating instability (RI) is often observed as significant increases of amplitude within a narrow frequency band which can be regarded as a pre-stall disturbance. In the current study, a single compressor rotor row with varying blade tip clearance (1.3%, 2.6% and 4.3% chord length) was numerically simulated using the zonal large eddy simulation model. The mesh with six blade passages was selected to capture the proper dynamic feature after being validated in comparison to the measured data, and the dynamic mode decomposition (DMD) approach was applied to the numerical temporal snapshots. In the experimental results, RIs are detected in the configurations with middle and large tip gaps (2.6% and 4.3% chord length), and the corresponding characterized frequencies are about 1/2 and 1/3 of the blade passing frequency, respectively. Simulations provide remarkable performance in capturing the measured flow features, and the DMD modes corresponding to the featured RI frequencies are successfully extracted and then visualized. The analysis of DMD results indicates that RI is essentially a presentation of the pressure wave propagating over the blade tip region. The tip leakage vortex stretches to the front part of the adjacent blade and consequently triggers the flow perturbations (waves). The wave influences the pressure distribution, which, in turn, determines the tip leakage flow and finally forms a loop.

2011 ◽  
Vol 2011 (0) ◽  
pp. _J051052-1-_J051052-4
Author(s):  
Kazunari MATSUDA ◽  
Kenichi FUNAZAKI ◽  
Hideo TANIGUCHI ◽  
Hiromasa KATO ◽  
Masafumi KUMAGAI ◽  
...  

Author(s):  
Yadong Wu ◽  
Tao Li ◽  
Shengzhi Lai ◽  
Jie Tian ◽  
Hua Ouyang

It is believed that the rotating instability phenomenon originating in the compressor tip region is due to leakage flow, which is closely associated with the blade tip clearance. In this work, we have studied the correlation between the dynamic characteristics of blade tip flow and the size of tip clearance for a single-stage low-speed compressor rotor, so as to unveil the mechanism of rotating instability. The full-passage numerical simulations were carried out to obtain the variations in frequency, circumferential mode, and spatial flow field associated with rotating instability. The results of spatial mode decomposition with open clearance show the number of predominate instability modes identified are 25 and 30, respectively. By diminishing the blade tip clearance, all these unstable modes greatly diminished. The formation and propagation of the tip leakage vortex were described in detail to show the development of rotating instability. Two flow field reduced-order methods, proper orthogonal decomposition and dynamic mode decomposition, were used to analyze the flow field, energy proportion, and stability of related modes under different tip clearances. The results show that the first several modes with strong stability account for a large proportion of energy and make a major contribution to flow unsteadiness. The energy proportion and stability of rotating instability decrease as the tip clearance becomes smaller. The blade-passing frequency and its multiples emerge as the main components of the flow field.


Author(s):  
Gongda Guo ◽  
Yangjun Zhang ◽  
Jianzhong Xu ◽  
Xinqian Zheng ◽  
Weilin Zhuge

Flow induced by blade tip clearance is important for centrifugal compressor, especially for the high charging ratio transonic centrifugal compressor of the vehicle. Based on three-dimensional CFD method, the evolution and mechanism of tip clearance flow for the high charging ratio transonic centrifugal compressor are investigated. It is verified that shock waves have important effect on blade tip clearance flow. The original position and strength of leakage vortices depend on the position and intensity of shock waves. The tip leakage vortex (TLV) evolution is influenced by the evolution of passage vortex (PV), corner vortex (CV) and separated vortex (SV). Shock wave, adverse pressure gradient and casing boundary layer accelerate the leakage vortices breakdown. Leakage vortex loss is the most important factor of impeller loss. The research on the blades tip leakage flow of transonic centrifugal compressor for vehicle lays a foundation for transonic centrifugal compressor flow control.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


Author(s):  
A. A. Ameri ◽  
E. Steinthorsson ◽  
David L. Rigby

Calculations were performed to assess the effect of the tip leakage flow on the rate of heat transfer to blade, blade tip and casing. The effect on exit angle and efficiency was also examined. Passage geometries with and without casing recess were considered. The geometry and the flow conditions of the GE-E3 first stage turbine, which represents a modern gas turbine blade were used for the analysis. Clearance heights of 0%, 1%, 1.5% and 3% of the passage height were considered. For the two largest clearance heights considered, different recess depths were studied. There was an increase in the thermal load on all the heat transfer surfaces considered due to enlargement of the clearance gap. Introduction of recessed casing resulted in a drop in the rate of heat transfer on the pressure side but the picture on the suction side was found to be more complex for the smaller tip clearance height considered. For the larger tip clearance height the effect of casing recess was an orderly reduction in the suction side heat transfer as the casing recess height was increased. There was a marked reduction of heat load and peak values on the blade tip upon introduction of casing recess, however only a small reduction was observed on the casing itself. It was reconfirmed that there is a linear relationship between the efficiency and the tip gap height. It was also observed that the recess casing has a small effect on the efficiency but can have a moderating effect on the flow underturning at smaller tip clearances.


Author(s):  
Yanhui Wu ◽  
Wuli Chu ◽  
Xingen Lu ◽  
Junqiang Zhu

The current paper reports on investigations with an aim to advance the understanding of the flow field near the casing of a small-scale high-speed axial flow compressor rotor. Steady three dimensional viscous flow calculations are applied to obtain flow fields at various operating conditions. To demonstrate the validity of the computation, the numerical results are first compared with available measured data. Then, the numerically obtained flow fields are analyzed to identify the behavior of tip leakage flow, and the mechanism of blockage generation arising from flow interactions between the tip clearance flow, the blade/casing wall boundary layers, and non-uniform main flow. The current investigation indicates that the “breakdown” of the tip leakage vortex occurs inside the rotor passage at the near stall condition. The vortex “breakdown” results in the low-energy fluid accumulating on the casing wall spreads out remarkably, which causes a sudden growth of the casing wall boundary layer having a large blockage effect. A low-velocity region develops along the tip clearance vortex at the near stall condition due to the vortex “breakdown”. As the mass flow rate is further decreased, this area builds up rapidly and moves upstream. This area prevents incoming flow from passing through the pressure side of the passage and forces the tip leakage flow to spill into the adjacent blade passage from the pressure side at the leading edge. It is found that the tip leakage flow exerts little influence on the development of the blade suction surface boundary layer even at the near stall condition.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


2003 ◽  
Vol 125 (2) ◽  
pp. 267-273 ◽  
Author(s):  
V. Srinivasan ◽  
R. J. Goldstein

Local mass transfer measurements were conducted on the tip of a turbine blade in a five-blade linear cascade with a blade-centered configuration. The tip clearance levels ranged from 0.6 to 6.9% of blade chord. The effect of relative motion between the casing and the blade tip was simulated using a moving endwall made of neoprene mounted on the top of the wind tunnel. Data were obtained for a single Reynolds number of 2.7×105 based on cascade exit velocity and blade chord. Pressure measurements indicate that the effect of endwall motion on blade loading at a clearance of 0.6% of blade chord is to reduce the pressure gradients driving the tip leakage flow. With the introduction of endwall motion, there is a reduction of about 9% in mass transfer levels at a clearance of 0.6% of chord. This is presumably due to the tip leakage vortex coming closer to the suction side of the blade and ‘blocking the flow,’ leading to reduced tip gap velocities and hence lower mass transfer.


Sign in / Sign up

Export Citation Format

Share Document