OS2141 Initiation and Development of Crack using Advanced Heat-Resistant Steel (P92 Steel) in Low Cycle Fatigue Tests under Elevated Temperatures

2014 ◽  
Vol 2014 (0) ◽  
pp. _OS2141-1_-_OS2141-2_
Author(s):  
Wataru ETO ◽  
Ken-ichi KOBAYASHI ◽  
Yoshiyuki HANAWA ◽  
Ryuji SUGIURA ◽  
Toshimitsu A. YOKOBORI
2020 ◽  
Vol 9 (6) ◽  
pp. 14388-14400
Author(s):  
Lianyong Xu ◽  
Shangqing Yang ◽  
Lei Zhao ◽  
Yongdian Han ◽  
Hongyang Jing ◽  
...  

2019 ◽  
Vol 33 (14n15) ◽  
pp. 1940034
Author(s):  
Il Heon Jeong ◽  
Yeong Min Park ◽  
Mun Ki Bae ◽  
Chi Hwan Kim ◽  
Tae Gyu Kim

The purpose of this study is to examine the low-cycle fatigue (LCF) characteristics of high-chrome heat-resistant steel, which is used in a high-temperature environment, at both ambient and high temperature. High-chrome heat-resistant steel, which is used for the turbine blades of a nuclear power plant, can be subject to plastic deformation due to overloading conditions at startup and shutdown. It is therefore very important to evaluate the damage caused by LCF, which is considered as fatigue damage due to plastic deformation. To examine the mechanical properties of high-chrome heat-resistant steel, the tensile strength was tested under different heat treatment conditions. In addition, the LCF characteristics were tested at ambient temperature and [Formula: see text].


Author(s):  
A. T. Yokobori ◽  
R. Sugiura ◽  
D. Yoshino ◽  
M. Tabuchi ◽  
Y. Hasegawa

The W added 9Cr ferritic heat resistant steel ASME grade P92, developed as a boiler tube material, is used under the conditions of creep-fatigue multiplication. In this paper, using P92 steel, crack growth tests under the conditions of creep-fatigue multiplication were conducted and the effects of cycle-dependent and time-dependent mechanisms on the crack growth life tf were investigated. Furthermore, on the basis of the concept of non-equilibrium science, the multiple effects of creep and fatigue on the crack growth life tf were clarified.


2010 ◽  
Vol 89-91 ◽  
pp. 295-300 ◽  
Author(s):  
Alla Kipelova ◽  
Rustam Kaibyshev ◽  
Andrey Belyakov ◽  
Izabella Schenkova ◽  
Vladimir Skorobogatykh

The microstructural changes in a 3%Co modified P911 heat resistant steel were examined under static annealing and creep at elevated temperatures. The quenched steel was tempered at temperatures ranging from 673 to 1073 K for 3 hours. The temperature dependence of hardness for the tempered samples exhibits the maximum at 723 – 823 K which is associated with the precipitations of fine carbides with an average size of about 20 nm. The transverse lath size of martensitic structure is  200 nm after air quenching and remains unchanged under tempering at temperatures below 800 K. An increase in tempering temperature to 1073 K resulted in hardness drop. Coagulation of carbides and growth of martensitic laths takes place at these temperatures. The creep tests were carried out at 873 and 923 K up to rupture, which occurred after about 4.5 × 103 hours. The structural changes in crept specimens were characterized by the development of coarse laths/subgrains. The mean transverse size of which was  0.67 and  1.3 m after the creep tests at 873 and 923 K, respectively. On the other hand, an average size of second phase particles of  165 nm was observed in the samples tested at both temperatures.


2010 ◽  
Vol 452-453 ◽  
pp. 433-436
Author(s):  
Hee Woong Lee ◽  
S.I. Kwun ◽  
Woo Sang Jung

The influence of the cooling condition after solution treatment on the high temperature fatigue resistance of 23Cr-26Ni heat resistant steel was investigated. Two different cooling conditions were applied to the steel after solution treatment at 1230oC for 3 hours. One specimen was water quenched immediately after the solution treatment. The other one was furnace cooled at a rate of 0.5oC/min down to 750oC after the solution treatment. Then, both specimens were aged at 750oC for 5 hours. The low cycle fatigue (LCF) test was conducted to investigate the influence of high temperature on the LCF behaviors of the heat-resistant 23Cr26Ni alloy. Under two different heat treatment conditions, the LCF test was performed at total strain amplitudes ranging from ±0.4~0.9% at room temperature (RT) and 600°C. During the test, initial cyclic hardening occurred at both experimental temperatures. This phenomenon was attributed to the increase in the dislocation density due to cyclic deformation, which resulted in the interaction between the newly created dislocations and precipitates. Cyclic softening was observed in the later stages of the LCF test at RT. The formation of precipitates and increase in the dislocation density were observed using TEM. Also, the XRD and EDS techniques were used to verify the type and composition of the precipitates.


2014 ◽  
Vol 891-892 ◽  
pp. 1413-1418
Author(s):  
Yoshiyuki Furuya ◽  
Kazuo Kobayashi ◽  
Masao Hayakawa ◽  
Masao Sakamoto ◽  
Yutaka Koizumi ◽  
...  

A high-temperature ultrasonic fatigue testing system was developed to evaluate the gigacycle fatigue properties of single-crystal superalloys used in aircraft engine turbine blades. In this development, a commercial ultrasonic fatigue testing machine was considerably modified to achieve high-temperature fatigue testing. The developed system took account of temperature dependency of Youngs modulus, and also had a function to evaluate the Youngs modulus. In order to protect the testing system from the heat of a specimen, straight and round rods were inserted between the testing system and the specimen. Other modifications achieved accurate control of temperature, edge displacement and resonance frequency, which were necessary for accurate control of stress amplitude. The testing system was first applied to a heat-resistant steel at 650 °C to check its accuracy, and next to SC superalloy samples at 1000 °C. In the conventional fatigue tests on the heat-resistant steel, the results were coincident in a frequency range from 1 Hz to 800 Hz, suggesting that comparable results would be obtained in ultrasonic fatigue testing at 20 kHz. In case of the SC superalloy samples, conventional fatigue tests were conducted at only 10 Hz, so the frequency effects were not clarified. In both cases, ultrasonic fatigue testing showed good agreement with conventional fatigue testing. The accuracy of the developed system is therefore high, even at 1000 °C. In these results, the SC superalloys showed no fatigue limit, indicating gigacycle fatigue tests to be necessary.


2014 ◽  
Vol 598 ◽  
pp. 153-159 ◽  
Author(s):  
Stanisław Mroziński ◽  
Michał Piotrowski

In this paper there has been presented a new quantitative criterion of the end of a low-cycle fatigue test conducted in the conditions of fixed amplitude loads. In this criterion there is used an analytical description of the parameters of the hysteresis loop and the number of cycles till the fracture. The conducted experimental verification of this criterion enabled to obtain satisfactory results. In the paper it has been stated that the presented criterion can have a special application in the case of tests of metal materials in an elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document