OS1206-299 Proposal of Mode-II-based Interfacial Fracture Toughness Evaluation for Indentation Test

2015 ◽  
Vol 2015 (0) ◽  
pp. _OS1206-29-_OS1206-29
Author(s):  
Yusuke YASUDA ◽  
Masayuki ARAI
2019 ◽  
pp. 089270571987486 ◽  
Author(s):  
Abdul Samad Khan ◽  
Aaqib Ali ◽  
Ghulam Hussain ◽  
Muhammad Ilyas

Multimaterial structures made using fused deposition modeling (FDM) offer an attractive prospect for enhancing their mechanical properties and functionality. In this study, the interfacial fracture toughness of a unidirectional hybrid composite fabricated by FDM was studied through mechanical testing. The composite structure comprises acrylonitrile butadiene styrene and carbon fiber-reinforced polylactic acid. Since, de-adhesion or bond failure at the interface can occur under a combination of the different fracture modes, therefore, interfacial fracture toughness, in terms of the critical energy release rate, was characterized using double cantilever beam specimen test for mode I, end-notched flexural specimen test for mode II, and mixed-mode bending specimen test for mixed-mode I/II. Effects of varying process parameters, like printing speed and nozzle temperature, on the interfacial fracture toughness in mode I and II were also investigated. It was found that increasing the nozzle temperature and printing speed enhance the fracture toughness, both in mode I and II, but the effect of increasing nozzle temperature on mode II fracture toughness was quite significant.


2013 ◽  
Vol 577-578 ◽  
pp. 149-152
Author(s):  
Masayuki Arai ◽  
Yasuhiro Yamazaki ◽  
Masato Suzuki ◽  
Yukio Miyashita ◽  
H. Waki

Collaborative research has been conducted by the Japan Thermal Spray Society (JTSS) to establish a standard test method for evaluating the interfacial fracture toughness of thermal sprayed coatings, including thermal barrier coatings. The test method is based upon the indentation test method utilizing a conventional Vickers hardness test machine. In this committee, round robin tests were performed to check differences in the evaluated results among collaborators. This paper reports on the progress of such activity in Japan.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2823
Author(s):  
Shiuh-Chuan Her ◽  
Kai-Chun Zhang

Epoxy resin with excellent mechanical properties, chemical stability, and corrosion resistance has been widely used in automotive and aerospace industries. A thin film of epoxy deposited on a substrate has great application in adhesive bonding and protective coating. However, the intrinsic brittleness of epoxy with a relatively low fracture toughness limits its applications. In this work, graphene nanoplatelets (GNP) were added to the epoxy resin to enhance its toughness, hardness, and elastic modulus. A series of nanocomposites with different loadings of GNP were fabricated. Ultrasonic sonication in combination with surfactant Triton X-100 were employed to disperse GNP in the epoxy matrix. A nanocomposite film with a thickness of 0.3 mm was deposited on an Al substrate using a spinning coating technology. The hardness and elastic modulus of the nanocomposite film on the Al substrate were experimentally measured by a nanoindentation test. Analytical expression of the mode II interfacial fracture toughness for the nanocomposite film on an Al substrate with an interfacial edge crack was derived utilizing the linear elastic fracture mechanics and Euler’s beam theory. End-notched flexure (ENF) tests were conducted to evaluate the mode II fracture toughness. It was found that the hardness, elastic modulus, and mode II fracture toughness of the nanocomposite film reinforced with 1 wt % of GNP were improved by 71.8%, 63.2%, and 44.4%, respectively, compared with the pure epoxy. The presence of much stiff GNP in the soft epoxy matrix prompts toughening mechanisms such as crack deflection and crack pinning, resulting in the improvements of the fracture toughness, hardness, and elastic modulus. Microscopic observation for the nanocomposite was examined by scanning electron microscopy (SEM) to investigate the dispersion of GNPs in the epoxy matrix. The performance of a nanocomposite film deposited on a substrate was rarely studied, in particular, for the interfacial fracture toughness of the film/substrate composite structure. Utilizing the theoretical model in conjunction with the ENF experimental test presented in this study, an accurate determination of the mode II interfacial fracture toughness of film/substrate composite structure is made possible.


2019 ◽  
Author(s):  
Denizhan Yavas ◽  
Ashraf Bastawros ◽  
Bishoy Dawood ◽  
Christopher Giuffre

2014 ◽  
Vol 627 ◽  
pp. 289-292 ◽  
Author(s):  
N. Kurihara ◽  
Masayuki Arai

The aim of this study is to show elastic J-integral needed to evaluate the interfacial fracture toughness of bi-material in indentation test. Three dimensional J-integrals along the crack front tip in semi-elliptical crack lying on the interface were analyzed using domain integral technique installed in commercialized finite element code MARC. The J-integral was calculated under several kind of aspect ratio of semi-elliptical cracks. In order to have to evaluate the interfacial fracture toughness from interfacial crack length and indentation load obtained in indentation tests, the analytical formula for two dimensional interfacial crack J-integral under plane stress, which had been introduced by J. R. Rice and G. C. Sih, was modified in reflecting upon the three dimensional effect. Finally, the indentation test was conducted for Aluminum alloy/ PMMA combination sample, and the associated fracture toughness was evaluated.Fig.1 Schematic illustration of indentation testFig.2 Schematic illustration of analysis mode


Sign in / Sign up

Export Citation Format

Share Document