scholarly journals Development of press molding preform design and fabrication method with unfolded diagram for CFRP

2019 ◽  
Vol 2019.13 (0) ◽  
pp. C21
Author(s):  
Tatsuki IKARI ◽  
Sho NAKAMA ◽  
Hidetake TANAKA
2019 ◽  
Vol 13 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Tatsuki Ikari ◽  
◽  
Hidetake Tanaka

In this study, a novel design and fabrication method that corresponds to simple and optimized press molding for carbon fiber reinforced plastics (CFRP) is proposed based on CAD data. Specifically, in recent years, CFRP has been widely used for weight reduction of transportation equipment. However, optimization of the production process is required to expand the range of applications of CFRP. To satisfy the aforementioned requirements, this study focused on the press molding technique. It was assumed that partial excessive or partial breakage of the fiber occurs due to the drawing of the fiber by the deformation force. A design and fabrication method was proposed for CFRP preform that exhibits the unfolded diagram shape of an objective three-dimensional (3D) model by using a tow prepreg as a solution for the aforementioned problems. A calculation method to generate the unfolded diagram was also proposed. Furthermore, the validity of the unfolded diagram was confirmed by reproducing the diagram for a 3D shape.


2015 ◽  
Vol 1105 ◽  
pp. 51-55 ◽  
Author(s):  
K.M. Gupta ◽  
Kishor Kalauni

Bhimal fibres are quite a newer kind of bio-degradable fibres. They have never been heard before in literatures from the view point of their utility as engineering material. These fibres have been utilized for investigation of their properties. Characterization of this fibre is essential to determine its properties for further use as reinforcing fibre in polymeric, bio-degradable and other kinds of matrix. With this objective, the fabrication method and other mechanical properties of Bhimal-reinforced-PVA biocomposite have been discussed. The stress-strain curves and load-deflection characteristics are obtained. The tensile, compressive, flexure and impact strengths have been calculated. The results are shown in tables and graphs. The results obtained are compared with other existing natural fibre biocomposites. From the observations, it has been concluded that the tensile strength of Bhimal-reinforced-PVA biocomposite is higher than other natural fibre composites. Hence these can be used as reinforcement to produce much lighter weight biocomposites.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Xinrui Zhang ◽  
Xianqiang Pei ◽  
Qihua Wang ◽  
Tingmei Wang

Carbon fabric/phenolic composites modified with potassium titanate whisker (PTW) were prepared by a dip-coating and hot-press molding technique, and the tribological properties of the resulting composites were investigated systematically using a ring-on-block arrangement under different sliding conditions. Experimental results showed that the optimal PTW significantly decreased the wear-rate. The worn surfaces of the composites and the transfer film formed on the counterpart steel ring were examined by scanning electron microscopy (SEM) to reveal the wear mechanisms. The transfer films formed on the counterpart surfaces made contributions to the improvement of the tribological behavior of the carbon fabric composites. The friction and wear of the filled carbon fabric composites was significantly dependent on the sliding conditions. It is observed that the wear-rate increased with increasing applied load and sliding speeds.


2021 ◽  
Vol 882 ◽  
pp. 114990
Author(s):  
Yu Tian ◽  
Jie Zhao ◽  
Dongxue Han ◽  
Shifan Zhao ◽  
Yuanwei Zhang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1264 ◽  
Author(s):  
Daehan Kim ◽  
Sung-Hwan Kim ◽  
Joong Yull Park

Polydimethylsiloxane (PDMS) membranes are used in various applications, such as microvalves, micropumps, microlenses, and cell culture substrates, with various thicknesses from microscale to nanoscale. In this study, we propose a simple fabrication method for PDMS membranes on a water surface, referred to as the floating-on-water (FoW) method. FoW can be used to easily fabricate PDMS membranes with thicknesses of a few micrometers (minimum 3 μm) without special equipment. In addition, as the membrane is fabricated on the water surface, it can be easily handled without damage. In addition, alternative membrane structures were demonstrated, such as membrane-on-pins and droplet-shaped membranes. FoW can be widely used in various applications that require PDMS membranes with microscale thicknesses.


Cast Metals ◽  
1992 ◽  
Vol 5 (2) ◽  
pp. 95-102 ◽  
Author(s):  
H. Soda ◽  
A. Ichinose ◽  
G. Motoyasu ◽  
A. Ohno ◽  
A. Mclean
Keyword(s):  

2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document