2P1-K10 Usage of Blind Area of Synthesized Extra-Wide Vision System in Remote Control of Mobile Robots(Vision System for Mobile Robot)

2012 ◽  
Vol 2012 (0) ◽  
pp. _2P1-K10_1-_2P1-K10_4
Author(s):  
Sho'ji SUZUKI ◽  
Ryoutarou SUDA
SIMULATION ◽  
2019 ◽  
Vol 96 (2) ◽  
pp. 169-183
Author(s):  
Saumya R Sahoo ◽  
Shital S Chiddarwar

Omnidirectional robots offer better maneuverability and a greater degree of freedom over conventional wheel mobile robots. However, the design of their control system remains a challenge. In this study, a real-time simulation system is used to design and develop a hardware-in-the-loop (HIL) simulation platform for an omnidirectional mobile robot using bond graphs and a flatness-based controller. The control input from the simulation model is transferred to the robot hardware through an Arduino microcontroller input board. For feedback to the simulation model, a Kinect-based vision system is used. The developed controller, the Kinect-based vision system, and the HIL configuration are validated in the HIL simulation-based environment. The results confirm that the proposed HIL system can be an efficient tool for verifying the performance of the hardware and simulation designs of flatness-based control systems for omnidirectional mobile robots.


Author(s):  
Daramola O. A. ◽  
Obe O. O. ◽  
Oriolowo A.

The use of Mobile Robots to interact with objects in remote locations has proved to be useful in areas not easily accessible or too dangerous for humans. Various means have been used to remotely operate or control Mobile Robots. These range from wired connection to Wireless connection like radio frequency signal and more recently internet controlled Mobile Robot using the TCP/IP protocol stack. However, the problem of remote control dependence on the Mobile Robot Platform or configuration has made it difficult to switch controllers between Mobile Robots. In this work, a portable IP based remote control system has been designed and implemented to remove the constraint imposed by the Mobile Robot's platform in choosing the control interface. The system developed was built on three loosely coupled components working together to ensure a high degree of Control interface portability. The Mobile Robot Gateway component was used to receive and send data from the Mobile Robot.


2010 ◽  
Vol 5 (1-2) ◽  
pp. 258-264
Author(s):  
Gyula Mester

The paper deals with the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and gives the fuzzy velocity control of a mobile robot motion in an unknown environment with obstacles. When the vehicle is moving towards the target and the sensors detect an obstacle, an avoiding strategy and velocity control are necessary. We proposed the wireless sensor-based remote control of mobile robots motion in an unknown environment with obstacles using the Sun SPOT technology and a fuzzy reactive navigation strategy of collision-free motion and velocity control in an unknown environment with obstacles. The simulation results show the effectiveness and the validity of the obstacle avoidance behavior in an unknown environment. The proposed method have been implemented on the miniature mobile robot Khepera® that is equipped with sensors.


1999 ◽  
Vol 11 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Shinji Kotani ◽  
◽  
Ken’ichi Kaneko ◽  
Tatsuya Shinoda ◽  
Hideo Mori ◽  
...  

This paper describes a navigation system for an autonomous mobile robot in outdoors. The robot uses vision to detect landmarks and DGPS information to determine its initial position and orientation. The vision system detects landmarks in the environment by referring to an environmental model. As the robot moves, it calculates its position by conventional dead reckoning, and matches landmarks to the environmental model to reduce error in position calculation. The robot's initial position and orientation are calculated from coordinates of the first and second locations acquired by DGPS. Subsequent orientations and positions are derived by map matching. We implemented the system on a mobile robot, Harunobu 6. Experiments in real environments verified the effectiveness of our proposed navigation.


Author(s):  
Sukjune Yoon ◽  
Chun-Kyu Woo ◽  
Hyun Do Choi ◽  
Sung-Kee Park ◽  
Sung-Chul Kang ◽  
...  

The purpose of this project is to develop a mobile robot for hazardous terrain exploration. The exploration of hazardous terrain requires the development of a passive mechanism adaptable to such terrain and a sensing system for obstacle avoidance, as well as a remote control. We designed a new mobile robot, the Ronahz 6-wheel robot, which uses a passive mechanism that can adapt to hazardous terrains and building stairways without any active control. The suggested passive linkage mechanism consists of a simple four-bar linkage mechanism. In addition, we install a stereo vision system for obstacle avoidance, as well as a remote control. Wide dynamic range CCD cameras are used for outdoor navigation. A stereo vision system commonly requires high computational power. Therefore, we use a new high-speed stereo correspondence algorithm, triangulation, and iterative closest point (ICP) registration to reduce computation time. Disparity maps computed by a newly proposed, high-speed method are sent to the operator by a wireless LAN equipment. At the remote control site, a three-dimensional digital map around a mobile robot is built by ICP registration and reconstruction process, and this three-dimensional map is displayed for the operator. This process allows the operator to sense the environment around the robot and to give commands to the mobile robot when the robot is in a remote site.


Sign in / Sign up

Export Citation Format

Share Document