scholarly journals H221 Simultaneous Measurements of Film Cooling Effectiveness and Heat Transfer Coefficient at Wavy Liner-Wall of Combustor by Using Steady-State Method with Two Different Thermal-Conductivity Materials : Effects of Cooling-Hole Diameter and Wavy-Wall Shape on Film Cooling Performance

2014 ◽  
Vol 2014 (0) ◽  
pp. _H221-1_-_H221-2_
Author(s):  
Yuta Ogiwara ◽  
Akira Murata ◽  
Hiroshi Saito ◽  
Kaoru Iwamoto ◽  
Shinji Tanaka ◽  
...  
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45 deg and 135 deg, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both prerib and postrib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


Author(s):  
Rui Zhu ◽  
Gongnan Xie ◽  
Terrence W. Simon

Secondary holes to a main film cooling hole are used to improve film cooling performance by creating anti-kidney vortices. The effects of injection angle of the secondary holes on both film cooling effectiveness and surrounding thermal and flow fields are investigated in this numerical study. Two kinds of primary hole shapes are adopted. One is a cylindrical hole, the other is a horn-shaped hole which is designed from a cylindrical hole by expanding the hole in the transverse direction to double the hole size at the exit. Two smaller cylindrical holes, the secondary holes, are located symmetrically about the centerline and downstream of the primary hole. Three compound injection angles (α = 30°, 45° and 60°, β = 30°) of the secondary holes are analyzed while the injection angle of the primary hole is kept at 45°. Cases with various blowing ratios are computed. It is shown from the simulation that cooling effectiveness of secondary holes with a horn-shaped primary hole is better than that with a cylindrical primary hole, especially at high blowing ratios. With a cylindrical primary hole, increasing inclination angle of the secondary holes provides better cooling effectiveness because the anti-kidney vortices created by shallow secondary holes cannot counteract the kidney vortex pairs adequately, enhancing mixing of main flow and coolant. For secondary holes with a horn-shaped primary hole, large secondary hole inclination angles provide better cooling performance at low blowing ratios; but, at high blowing ratios, secondary holes with small inclination angles are more effective, as the film coverage becomes wider in the downstream area.


Author(s):  
Sebastian Schulz ◽  
Simon Maier ◽  
Jeffrey P. Bons

In an attempt to abate the detrimental jet vorticity and lift-off effects at high blowing ratios, the objective of the present study is to investigate the impact of an anti-vortex film cooling hole design on the film cooling effectiveness and the secondary flow field. Furthermore, the influence of low and high turbulence levels is studied with Tu ≈ .0.7% and ≈ 10%, respectively. For the experiments infrared thermography and particle image velocimetry (PIV) are employed. The experiments are conducted in a subsonic wind tunnel at a Reynolds number of 11000 based on the film cooling hole diameter. A flat plate model with an array of three cylindrical primary holes with secondary offshoots to each side represents the anti-vortex geometry. The cylindrical hole arrangement with a diameter of 17.5 mm is inclined at 30° in streamwise direction, with the anti-vortex holes branching off from the primary hole base in a 21° angle. Information from a flat plate with six cylindrical holes of 17.5 mm in diameter inclined at 30 in streamwise direction is used as baseline for comparison. The primary hole spacing was 4.75 and 3 hole diameters, respectively. Results are presented for blowing ratios of 1 and 2 with a constant density ratio of 1.1. The PIV measurements are taken in two planes perpendicular to the flow direction to record the secondary flow structures. The results of the infrared thermography show a strong decrease in film cooling effectiveness as high turbulence levels occur, especially for low blowing ratios. For higher blowing ratios low and high turbulence levels have similar effects on film cooling effectiveness. A significant improvement in film cooling performance is displayed by the anti-vortex design over the standard circular hole arrangement for every blowing ratio. The effectiveness results reveal an improved lateral spreading of the coolant with coolant jets staying attached throughout the series of experiments. By remaining inside the boundary layer, the effects of a high turbulent freestream on film cooling performance is less. The PIV results unveil information of a new vortex pair on either side of the primary hole kidney vortex. Especially at high blowing ratios the results indicate, that the anti-vortex hole design promotes the interaction between the vortical structures, explaining the increased lateral film effectiveness results. The factor which lends to the superior performance and credibility of the studied anti-vortex design is that the results are obtained for 35% less mass flow than the baseline.


Author(s):  
Sang Hyun Oh ◽  
Dong Hyun Lee ◽  
Kyung Min Kim ◽  
Moon Young Kim ◽  
Hyung Hee Cho

An experimental investigation is conducted on the cooling effectiveness of full-coverage film cooled wall with impingement jets. Film cooling plate is made of stainless steel, thus the adiabatic film cooling effectiveness and the cooling effect of impingement jet underneath the film cooling plate are comprised in the cooling effectiveness. Infra-red camera is used to measure the temperature of film cooled surfaces. Experiments are conducted with different film cooling hole angles, such as 35° and 90°. Diameters of both film cooling holes and impinging jet holes are 5 mm. The jet Reynolds number base on the hole diameter (Red) ranges from 3,000 to 5,000 and equivalent blowing ratios (M) varies from 0.3 to 0.5, respectively. The distance between the injection plate and the film cooling plate is 1, 3 and 5 times of the hole diameter. The streamwise and spanwise hole spacing to the hole diameter ratio (p/d) are 3 for both the film cooling hole plate and the impingement jet hole plate. The 35° angled film cooling hole arrangement shows higher film cooling effectiveness than the 90° film cooling hole arrangement. As the blowing ratio increases, the cooling effectiveness is enhanced for both the 35° almost constant regardless of H/d, while H/d = 1 shows a minimum value for the angled film cooling hole.


Author(s):  
Sanga Lee ◽  
Dong-Ho Rhee ◽  
Kwanjung Yee

In spite of a myriad of researches on the optimal shape of film cooling holes, only a few attempts have been made to optimize the hole arrangement for film cooling so far. Moreover, although the general scale of film cooling hole is so small that manufacturing tolerance has substantial effects on the cooling performance of turbine, the researches on this issue are even scarcer. If it is possible to obtain optimal hole arrangement which not only improve the film cooling performance but also is robust to the manufacturing tolerance, then overall cooling performance of a turbine would become more reliable and useful from the practical point of view. To this end, the present study proposed a robust design optimization procedure which takes the manufacturing uncertainties into account. The procedure was subsequently applied to the film cooling holes on high pressure turbine nozzle pressure side to obtain the robust array shape under the uncertainty of the manufacturing tolerance. First, the array of the holes was parameterized by 5 design variables using the newly suggested shape functions, and 2 representative factors were considered for the manufacturing tolerance of the film cooling hole. Probabilistic process that consists of Kriging surrogate model and Monte Carlo Simulation with descriptive sampling method was coupled with the design optimization process using Genetic Algorithm. Through this, film cooling hole array which shows the high performance, yet robust to the manufacturing tolerance was obtained, and the effects of the manufacturing tolerance on the cooling performance was carefully investigated. As a result, the region where the film cooling effectiveness is noticeable, as well as the maximum width of the variation of the film cooling effectiveness were reduced through optimization, and it is also confirmed that the tolerance of the holes near the leading edge is more influential to the cooling performance because the film cooling effectiveness is more sensitive to the manufacturing tolerance of the leading edge than that of the trailing edge.


Author(s):  
Jens Dickhoff ◽  
Karsten Kusterer ◽  
Santhosh Kumar Bhaskar ◽  
Dieter Bohn

In modern gas turbines, film cooling technology is essential for the protection of hot parts. Today, shaped holes are widely used, but besides others, the NEKOMIMI-shaped cooling holes have shown that there is still potential to increase the film cooling effectiveness significantly by generation of Anti-Counter-Rotating Vortices (ACRV). Within the past decade, the technology has been improved step by step at B&B-AGEMA and Kawasaki Heavy Industries Ltd.; mainly by means of numerical simulations. The laterally averaged film cooling effectiveness is typically captured with acceptable accuracy, but the experimental measurements still show a deviation from the numerically obtained results with respect to the local film cooling effectiveness distribution behind the film cooling hole. Nevertheless, the film cooling air spread out in the lateral direction is one of the keys for enhancement of the film cooling performance. Thus, more precise simulations are consequently necessary for improvement of the hole shape configuration. The present study involves simulations of a baseline fan shaped hole configuration (“777 hole” investigated by Schroeder and Thole [1][2]) using different turbulence models available in STAR-CCM+ with isotropic and anisotropic turbulence consideration (constitutive relations). Distinct differences with respect to flow phenomena (detachments and vortex creation) can be observed depending on the applied turbulence model. In total, the results show that anisotropic viscosity strongly influences the film cooling performance prediction by CFD for prediction of the film cooling effectiveness, but none of the models provides acceptable accuracy in this regard.


Author(s):  
Harald Peter Kissel ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Sven Olaf Neumann ◽  
Antje Ungewickell

This paper presents an experimental and numerical investigation into film cooling performance over a flat plate. As previous studies have shown, the flow situation at the entry-side of the cooling hole shows a notable effect on film cooling performance. The present investigation takes this into account feeding the cooling holes from an internal cooling channel and not from a stagnant plenum. High resolution heat transfer coefficient and adiabatic film cooling effectiveness distributions received from transient liquid crystal experiments are presented. The Reynolds numbers of the hot gas channel and the coolant crossflow feeding the holes are varied. Furthermore, the effects of 45° angled ribs, introduced into the cooling channel, are investigated. The experiments are performed at constant blowing, momentum and pressure ratios. Numerical calculations of the adiabatic film cooling effectiveness for selected configurations using FLUENT are presented. Comparison reveals the influence of coolant channel Reynolds number and the introduced ribs on the cooling hole flow pattern leading to a changed film cooling performance.


Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45° and 135°, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both pre-rib and post-rib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially-averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


Author(s):  
Sun-min Kim ◽  
Ki-Don Lee ◽  
Kwang-Yong Kim

Film-cooling has been widely used as the important alternative to protect the turbine blade. Since the film-cooling hole geometry is one of the most influential parameters for film-cooling performance, various film-cooling hole schemes have been developed to increase cooling performance for the past few decades. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as fan-shaped, crescent, louver, and dumbbell holes. For analyzes of the turbulent flow and film-cooling, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been performed in comparison with experimental data. The flow characteristics and film-cooling performance for each hole shape have been investigated and evaluated in terms of local- and averaged film-cooling effectivenesses.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 2013-2023
Author(s):  
Duraisamy Ravi ◽  
Kanjikovil Parammasivam

Computational studies were carried out in the end-wall of a linear cascade, of chosen blade profile, which is provided with one row of cylindrical film cooling holes inclined at 30o to the end wall. The CO gas was used as the coolant supplied through the film holes, 2 maintaining a blowing ratio of 0.6. The film cooling hole row was positioned at the leading edge of the cascade. The mainstream fluid was air and based on its properties at the cascade inlet, the flow was found turbulent. A semi cylindrical trench was placed at two positions upstream of the cascade leading edge and three positions downstream of it. ANSYS FLUENT 15.0 was used to compute the film cooling effectiveness of the cascade endwall. Trench positioned at a distance of twice that of film hole diameter, was found to show a highest increase of area averaged effectiveness value by 30.4% over the baseline. Further to this, the influence of the trench diameter was carried out where the trench with diameter twice that of film hole diameter was found to show a 31.3% increase of cooling effectiveness over the baseline. Studies on the influence of blowing ratio showed a highest increment of cooling effectiveness value by 43.5% over the baseline a blowing ratio of 1.2.


Sign in / Sign up

Export Citation Format

Share Document