scholarly journals Gas Leakage from Piston-Ring of Small Out-put Diesel Engine

1956 ◽  
Vol 22 (124) ◽  
pp. 934-939 ◽  
Author(s):  
Shoichi FURUHAMA
Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 116
Author(s):  
Wilman Orozco Lozano ◽  
Marlen Del Socorro Fonseca-Vigoya ◽  
Jhon Pabón-León

The present research aims to analyze the kinematic and dynamic behavior of the piston ring package. The development of the research was carried out through the development of numerical simulation by means of CFD. The analysis involves the three piston rings for the development of simulations that are closer to the real conditions of the engine since most of the investigations tend to focus on the study of the compression ring only. The simulation was reinforced by the incorporation of mathematical models, which allow determining the piston kinematics, the lubrication properties as a function of temperature, contact friction, and gas leakage. For the simulation, the CAD of the piston and the connecting rod—crankshaft mechanism was carried out, taking as a reference the geometry of a diesel engine. From the results obtained, it was possible to show that the first ring exhibits considerably greater radial and axial movement compared to the second and third piston rings. Additionally, it was shown that the first and second rings tend to maintain a negative tilt angle throughout the combustion cycle, which facilitates the advancement of the combustion gases over the piston grooves. Therefore, it is necessary to use strategies so that these rings tend to maintain a positive inclination. The analysis of the pressure conditions in the second ring are 150% and 480% higher compared to the conditions present in the third ring. Due to the above, it is necessary to focus efforts on the design of the profile of this ring. The study of energy losses showed that the combination of leakage gases and friction are responsible for a mechanical loss between 6–16%. In general, the development of the proposed methodology is a novel tool for the joint analysis of the kinematic characteristics, pressure conditions, and energy losses. In this way, integrated analysis of changes caused by piston ring designs is possible.


2012 ◽  
Vol 424-425 ◽  
pp. 132-136
Author(s):  
Guo Jin Chen ◽  
Zhang Ming Peng ◽  
Jian Guo Yang ◽  
Qiao Ying Huang

On the diesel engine’s test bed, this paper has studied the parameters regarding the diesel engine’s rotational speed, the piston ring’s width and wearing capacity and so on, and their relation with the output signal of the magnetoresistive sensor under the reverse drawing of the diesel engine. The research discovered that the piston ring’s wear and the magnetoresistive sensor’s output have the corresponding relationship. And on the oil tanker with the 6RTA52U diesel engine, the influence of the diesel engine’s operating parameters and the load situations to the magnetoresistive sensor’s output is surveyed under four kinds of different operating modes. The test result and the research conclusion provide the technical foundation for the online Wear monitoring of the large-scale marine diesel engine’s piston ring.


2014 ◽  
Vol 620 ◽  
pp. 104-110
Author(s):  
Wen Min Li ◽  
Cun Yun Pan ◽  
Jin Zhou Chen

This paper modeling the piston ring of a new double-rotor engine based on the analysis, use Matlab program some code and woke out the numerical solution of the model,analyze the change of the gas leakage in the condition of different gas-room volume, different opening area, different spindle rotational speed, which provide strong evidence for improving sealing of the new double-rotor engine and ameliorating sealing design.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.


1993 ◽  
Author(s):  
Hideki Yoshida ◽  
Masaki Yamada ◽  
Hiroyuki Kobayashi

2014 ◽  
Vol 16 (7) ◽  
pp. 908-921
Author(s):  
Wanyou Li ◽  
Yibin Guo ◽  
Xiqun Lu ◽  
Xuan Ma ◽  
Tao He ◽  
...  

2010 ◽  
Vol 139-141 ◽  
pp. 1036-1039 ◽  
Author(s):  
Jian Ping Zhang ◽  
Yan Kun Jiang ◽  
Xin Liu ◽  
Zhe Lin Dong

Aiming at a large marine diesel engine, a mathematical model for the 3-D elastohydrodynamic lubrication analysis of piston ring-cylinder liner was presented. The average Reynolds equation and asperity contact approach were combined with the elastic deformation equation. The asymmetry in the circumferential direction, gas blowby and the effect of temperature and pressure on the oil density and viscosity were considered. The 3-D wear simulation of piston ring-cylinder liner was performed when the diesel engine was operated under warm start and cold start conditions, respectively. The 3-D distribution rules show that the first gas ring has the biggest wear loss, and the maximum wear loss of cylinder liner occurs in the vicinity of TDCF. Finally, the results matched well with the wear measurements, and it indicates the present method is effective and can help engineers to improve the tribological performance of the diesel engine.


Sign in / Sign up

Export Citation Format

Share Document