Analysis of Oil Film Thickness on a Piston Ring of Diesel Engine: Effect of Oil Film Temperature

Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

Abstract This paper describes that an analysis of oil film thickness on a piston ring of diesel engine. The oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional (2-D) energy equation with a heat generated from viscous dissipation. The temperature distribution in the oil film is calculated by using the energy equation and the mean oil film temperature is computed. Then the viscosity of oil film is estimated by using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. As a result, the oil film thickness could be calculated by using the viscosity estimated from the mean oil film temperature and the calculated value is agreement with the measured values.

2003 ◽  
Vol 125 (2) ◽  
pp. 596-603 ◽  
Author(s):  
Y. Harigaya ◽  
M. Suzuki ◽  
M. Takiguchi

This paper describes an analysis of oil film thickness on a piston ring of a diesel engine. The analysis of the oil film thickness has been performed by using Reynolds equation and unsteady, two-dimensional energy equation with heat generated from viscous dissipation. The mean oil film temperature was determined from the calculation of the temperature distribution in the oil field which was calculated using the energy equation. The oil film viscosity was then estimated using the mean oil film temperature. The effect of oil film temperature on the oil film thickness of a piston ring was examined. This model has been verified with published experimental results. Moreover, the heat flow at ring and liner surfaces was examined. Results show that the oil film thickness could be calculated using the viscosity estimated from the mean oil film temperature. The calculated values generally agree with the measured values. For higher engine speed conditions, the maximum values of the calculated oil film thickness are larger than the measured values.


2004 ◽  
Vol 128 (3) ◽  
pp. 685-693 ◽  
Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Fujio Toda ◽  
Masaaki Takiguchi

The effect of lubricant viscosity on the temperature and thickness of oil film on a piston ring in a diesel engine was analyzed by using unsteady state thermohydrodynamic lubrication analysis, i.e., Reynolds equation and an unsteady state two-dimensional energy equation with heat generated from viscous dissipation. The oil film viscosity was then estimated by using the mean oil film temperature and the shear rate for multigrade oils. Since the viscosity for multigrade oils is affected by both the oil film temperature and shear rate, the viscosity becomes lower as the shear rate between the ring and liner becomes higher. Under low load conditions, the viscosity decreases due to temperature rise and shear rate, while under higher load conditions, the decrease in viscosity, is attributed only to the shear rate. The oil film thickness between the ring and liner decreases with a decrease of the oil viscosity. The oil film thickness calculated by using the viscosity estimated by both the shear rate and the oil film temperature gave the smallest values. For multigrade oils, the viscosity estimation method using both the mean oil film temperature and shear rate is the most suitable one to predict the oil film thickness. Moreover, the heat transfer at ring and liner surfaces was examined.


Author(s):  
Takashi Ishijima ◽  
Akiko Shimada ◽  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Masaaki Takiguchi

An unsteady and two-dimensional thermohydrodynamic lubrication model in consideration of the ring movement and the heat flow from ring groove to piston ring was developed. The piston ring temperature in an internal combustion engine was analyzed by using the unsteady and two-dimensional form heat-conduction equation in consideration of axial movement of ring and heat flow from ring groove to ring during a cycle. The oil film temperature, oil film thickness and heat transfer between ring and liner surfaces were analyzed by using the calculated ring temperature taking into consideration cycle variation. The results are as follows. The heat flow rate around ring changes greatly with the ring movement and the ring sliding face temperature changes about 6 °C in a cycle. Then, the cycle mean temperature of ring sliding face becomes lower than the ring sliding face temperature calculated by the ring groove and liner surface temperatures under 2800 rpm and full load conditions. Therefore, the oil film viscosity is higher than that of the conventional viscosity model in which the viscosity was based on a constant ring sliding face temperature in a cycle. The oil film thickness predicted by the present method is thicker than that calculated by our previous method.


1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


1968 ◽  
Vol 90 (1) ◽  
pp. 297-304 ◽  
Author(s):  
H. Tahara

This paper deals with the forced cooling problem of a slider bearing with wedge film of finite length, where most of the heat generated in the lubricant film is removed by a coolant which flows under the surface of the bearing pad. Analysis was made on the generalized Reynolds’ equation, including viscosity variations with temperature throughout the film and the energy equation. Simultaneous solutions of these equations seemed to be supported by experiments. From the analysis, calculations were made on the heat flow rate into the coolant, the temperature difference between slider and pad surfaces, bearing characteristics using the representative viscosity, and the mean heat transfer coefficient of the wedge film.


2012 ◽  
Vol 550-553 ◽  
pp. 3214-3218
Author(s):  
Jun Yan Zhang ◽  
Shu Kui Han

Based on the unified Reynolds equation model and fast Fourier transform (FFT) method, the lubrication performance of the piston pin bearing for high power density diesel engine was studied by numerical simulation. First of all, through the coupled solving of a unified Reynolds equation and elastic deformation equation, the orbit of journal center for piston pin bearing is investigated. The eccentricity ratio of the piston pin bearing in vertical direction of the piston stroke is smaller, however it is much larger in the downward direction of the piston stroke, which indicate that the below area of the piston pin bearing bears greater load and occurs larger deformation. This is consistent with the reality that the below area of the piston pin bearing is prone to damage and wear. Secondly, the influence of the different bearing clearances and width on the minimum oil film thickness is discussed, The results show that the minimum oil film thickness is increased, while the width of piston pin bearing is increased or the clearance of piston pin bearing is decreased.


Author(s):  
Xiaoli Wang ◽  
Jingfang Du ◽  
Junyan Zhang

Based on the unified Reynolds equation and Fast Fourier Transform (FFT) method, the mixed lubrication characteristics of piston pin bearing in diesel engine with high power density are numerically simulated. Firstly, the unified Reynolds equation and the elastic deformation equation are solved simultaneously, and then the effects of viscosity-pressure on the maximum film pressure, the minimum oil film thickness and the piston pin orbit are analyzed. It is shown that for the semi-floating piston pin bearing with high power density, when viscosity-pressure is taken into consideration, both the minimum oil film thickness and the maximum oil film pressure increase, while the elastic deformation of the area in which the maximum load applies decreases. The transient diagrams of the relative position between the piston pin and its bearing within a whole loading period are given. It is also indicated that the eccentricity ratio of piston pin bearing along the direction of piston stroke is greater because of the greater load exerting on the back of the semi-floating piston pin bearing and thus resulting in the obvious deformation in the back area. This result is in good agreement with the existing real failure mode of the piston pin bearing with high power density. In addition, the effects of bearing clearance and length on the minimum oil film thickness are investigated respectively. It is shown that the smaller bearing clearance and the greater width are beneficial for the increasing of the minimum oil film thickness of piston pin bearing.


2010 ◽  
Vol 97-101 ◽  
pp. 1239-1242
Author(s):  
De Liang Liu ◽  
Hui Biao Lu ◽  
C.G. Sun

Piston ring-cylinder is one of the most important friction pair of internal combustion engine,the lubricating state between them has decided internal combustion engine lubrication quality. So the theoretical research to the lubricating characteristics of the piston-ring group, especially the calculation of the lubricating oil film thickness is very important. The oil film thickness between piston-ring and cylinder is studied by calculation method. The calculation program is developed with average Reynolds equation taken the surface topography, viscosity-temperature effect, viscosity-pressure effect, extrusion effect and other factors into account. The position of oil outlet point is preinstalled, the full lubrication is assumed, and the Reynolds equation is solved by full pivot element gausses elimination approach, so the iterative course and calculation workload are reduced, and a great lot of the calculating time is saved, the oil film thickness of full period can be more accurately predicted by the ordinary PC within 30 minutes, which can supply quick effective evidence for next calculation and analysis.


Author(s):  
K Liu ◽  
Y. B. Xie ◽  
C. L. Gui

Based on the two-dimensional average flow model and asperity contact model, a theoretical model for the non-axisymmetrical analysis of piston ring lubrication has been suggested in this paper. The two-dimensional distribution of oil-film thickness between the piston rings and cylinder wall is obtained. Results show that the oil-film thickness along the circumference is non-uniform. Starvation is also considered in the model. The effect of secondary motion of piston assemblies on the lubrication property of the piston ring pack has also been studied.


Author(s):  
Yasuo Harigaya ◽  
Michiyoshi Suzuki ◽  
Fujio Toda ◽  
Masaaki Takiguchi

The effect of lubricant viscosity on the temperature and thickness in oil film on a piston ring in a diesel engine was analyzed by using unsteady state thermohydrodynamic lubrication analysis, that is Reynolds equation and an unsteady state two-dimensional (2-D) energy equation with heat generated from viscous dissipation. The oil film viscosity was then estimated by using the mean oil film temperature and the shear rate for multi grade oils. The shear rate between the ring and liner becomes higher, so that the viscosity for the multi grade oil is affected by the oil film temperature and shear rate, and the viscosity becomes lower. Under low temperature condition, the viscosity becomes lower due to viscous heating and shear rate and under higher temperature condition, the viscosity affected by the shear rate becomes lower. The oil film thickness between the ring and liner decreases with decrease of the oil viscosity, and it is the thinnest that the oil film thickness is calculated by using the viscosity estimated by both the shear rate and the oil film temperature. Moreover, the heat transfer at ring and liner surfaces was examined.


Sign in / Sign up

Export Citation Format

Share Document