scholarly journals Research on Discontinuity of Lubricant Film in Journal Bearing : 1st Report, Bearing Characteristics and Oil Film Rupture

1967 ◽  
Vol 33 (248) ◽  
pp. 658-666 ◽  
Author(s):  
Haruo MORI ◽  
Seiji MIYATA ◽  
Yasuo ABE ◽  
Yoshio FUJITA
Author(s):  
D Dowson ◽  
C M Taylor ◽  
A A S Miranda

Analyses of liquid film journal bearings rarely consider the reformation of the lubricant film. This reformation normally takes place in the vicinity of a supply groove and is influenced by, amongst other parameters, the lubricant supply pressure. In a previous paper the authors have described in detail the implementation of an algorithm to locate automatically and efficiently the locus of film rupture and reformation boundaries using a digital computer. In the present paper results are presented for a wide range of important variables. In particular, the prediction of lubricant supply rate is studied carefully and compared with data presented in a widely used design aid which does not account in detail for the influence of film reformation.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988379
Author(s):  
Yu Zhang ◽  
Guoding Chen ◽  
Lin Wang

Hydrodynamic journal bearing is an important part of rotary machine and faces many challenges such as high rotating speed, heavy specific pressure, and large temperature rise with the development of industry. These challenges lead to notable thermal and elastic deformations of the journal bearing. Surface texture has been proved to be a valid method to promote bearing lubricating properties. However, effects of thermal and elastic deformations on lubricating properties of the textured journal bearing have not been clearly analyzed. Based on this, the article presents a method to transform thermal–structural–fluid interaction into thermal–structural interaction and thermal–fluid interaction based on textured journal bearing model. Cavitation and temperature-viscosity effects are also considered. Based on this method, action mechanisms of surface texture on lubricating properties are discussed considering elastic and thermal deformations, and effects of elastic and thermal deformations on the textured journal bearing are also investigated. The results show that the load carrying capacity and the maximum oil film pressure of the textured journal bearing both increase when elastic and thermal deformations are considered. Optimal texture parameters can enhance the backflow effect in dimples and restraint cavitation phenomenon in the oil film rupture region. Meanwhile, inertial and cavitation effects caused by surface texture have significant effects on elastic and thermal deformations of the journal bearing.


2006 ◽  
Vol 2006 (0) ◽  
pp. _327-1_-_327-5_
Author(s):  
Yosuke KOBA ◽  
Masanori SUMIDA ◽  
Yoichi KANEMITU ◽  
Shinya KIJIMOTO ◽  
Koichi MATUDA

2013 ◽  
Vol 420 ◽  
pp. 47-50
Author(s):  
Ying Yang ◽  
Jing Hua Dai

Under high and super-high speed, oil film of the journal bearing is easy to crack and then becomes cavitation. The existence of cavitation has an important effect on the work characteristics of the shaft. On the journal bearing experiment rig the cavitation characteristics of the three-groove journal beaing were studied. The influences of the shaft rotating speed and supply pressure on cavitation shape were investigated. The results show that rotating speed and supply pressure have a clear effect on the cavitation shape, and the number of cavitation strip in the rupture zone decreases when the supply pressure increases.


2021 ◽  
Vol 37 ◽  
pp. 282-290
Author(s):  
Junchao Zhu ◽  
Haiyu Qian ◽  
Huabing Wen ◽  
Liangyan Zheng ◽  
Hanhua Zhu

ABSTRACT This paper investigates journal bearings, and builds a lubrication model taking into account misalignment, the lubricant couple stress effect and shear thinning. In order to explore the sensitivity of couple stress fluid lubrication performance to oil film thickness, we introduce the critical oil film thickness coefficient. The results show that the sensitivity increases with the increase of the couple stress coefficient, and it is highest in the area of minimum oil film thickness. Compared with a parallel journal, increases in the misalignment angle strengthen the effect of couple stress. Shear thinning also plays an important role in bearing lubrication performance. For a low oil inlet temperature, the effect of shear thinning increases with the increase of the couple stress parameter. For a high oil inlet temperature, the influence is negligible. An increase in the misalignment angle will not further enhance the effect of shear thinning.


2002 ◽  
Vol 124 (3) ◽  
pp. 494-505 ◽  
Author(s):  
Kiyoshi Hatakenaka ◽  
Masato Tanaka ◽  
Kenji Suzuki

A new modified Reynolds equation is derived with centrifugal force acting on the hydrodynamic oil film being considered. This equation, together with a cavitation model, is used to obtain the steady-state equilibrium and calculate the rotordynamic coefficients of lightly loaded floating bush journal bearings operating at very high shaft speeds. The bush-to-shaft speed ratio and the linear cross-coupling spring coefficients of the inner oil film is found to decrease with the increase in shaft speed as the axial oil film rupture develops in the inner oil film. The present model can give reasonable explanation to the steady-state behavior and the stability behavior of the bearing observed in actual machines.


2013 ◽  
Vol 420 ◽  
pp. 74-77
Author(s):  
Ying Yang ◽  
Jing Hua Dai ◽  
Xu Li

Under high and super high speed, the oil film of a journal bearing is easy to crack and then becomes cavitation. The existence of cavitation has a great effect on the work performance of the bearing. The cavitation mechanism of a spiral oil wedge journal bearing was investigated on the experimental rig. The effects of rotating speed and supply pressure on the cavitation shape of oil film and the number of cavitation strip in the rupture zone were analyzed. The results show that the cavitation shape of oil film is a long strip. The number of cavitation strip increases when supply pressure has been improved, and the location of oil outlet must be designed optimally.


Sign in / Sign up

Export Citation Format

Share Document