scholarly journals Analysis of misaligned journal bearing lubrication performance considering the effect of lubricant couple stress and shear thinning

2021 ◽  
Vol 37 ◽  
pp. 282-290
Author(s):  
Junchao Zhu ◽  
Haiyu Qian ◽  
Huabing Wen ◽  
Liangyan Zheng ◽  
Hanhua Zhu

ABSTRACT This paper investigates journal bearings, and builds a lubrication model taking into account misalignment, the lubricant couple stress effect and shear thinning. In order to explore the sensitivity of couple stress fluid lubrication performance to oil film thickness, we introduce the critical oil film thickness coefficient. The results show that the sensitivity increases with the increase of the couple stress coefficient, and it is highest in the area of minimum oil film thickness. Compared with a parallel journal, increases in the misalignment angle strengthen the effect of couple stress. Shear thinning also plays an important role in bearing lubrication performance. For a low oil inlet temperature, the effect of shear thinning increases with the increase of the couple stress parameter. For a high oil inlet temperature, the influence is negligible. An increase in the misalignment angle will not further enhance the effect of shear thinning.

2011 ◽  
Vol 199-200 ◽  
pp. 734-738 ◽  
Author(s):  
Qiu Ying Chang ◽  
Xian Liang Zheng ◽  
Qing Liu

Surface texturing has been successfully employed in some tribological applications in order to diminish friction and wear. This technology may be used in a piston ring to decrease the friction and wear of the contact between a piston ring and cylinder liner. A numerical simulation of lubrication between a surface textured piston ring and cylinder liner based on the hydrodynamic lubrication theory was conducted. The influence of surface texture parameters on piston ring lubrication performance was obtained by solving the mathematical equations with a multi-grid method. The results show that under the micro-dimple area density of 5%-40% the minimum oil film thickness increases and the dimensionless friction force decreases with the increasing of it. Under the dimple area density of 40%-60%, the minimum oil film thickness and the dimensionless friction force change slightly. Under various dimple area densities the optimum dimple depth at the given working condition in this paper is about 5µm.


Author(s):  
Yanfeng Han ◽  
Guo Xiang ◽  
Jiaxu Wang

Abstract The mixed lubrication performance of water-lubricated coupled journal and thrust bearing (simplified as coupled bearing) is investigated by a developed numerical model. To ensure the continuity of hydrodynamic pressure and flow at the common boundary between the journal and thrust bearing, the conformal transformation is introduced to unify the solution domain of the Reynolds equation. In the presented study, the coupled effects between the journal and thrust bearing are discussed. The effects of the thrust bearing geometric film thickness on the mixed lubrication performance, including the load capacity, contact load and friction coefficient, of the journal bearing are investigated. And the effects of the journal bearing eccentricity ratio on the mixed lubrication performance of the thrust bearing are also investigated. The simulated results indicate the mutual effects between the journal and thrust bearing cannot be ignored in the coupled bearing system. The increasing thrust bearing geometric film thickness generates a decrease in load capacity of journal bearing. There exists an optimal eccentricity ratio of journal bearing that yields the minimum friction coefficient of the thrust bearing.


Author(s):  
Caichao Zhu ◽  
Zhangdong Sun ◽  
Huaiju Liu ◽  
Chaosheng Song ◽  
Zufeng Li ◽  
...  

The lubrication performances of cycloid drives affect the dynamic characteristics, the mechanical efficiency and the contact fatigue behavior of the system. To maintain tranmission precision it is required to minimum the times of disassebly, hence grease lubrication is often applied where starvation might occur in service. Starved lubrication performance of a cycloid gear drive is studied using a numerical finte line starved-elastohydrodynamic lubrication model. The parameter of the inlet oil film thickness is chosen to represent the starved status. Effects of the inlet film thickness on the centralfilm thickness, the friction coefficient and the frictional power loss are investigated. In addition, effects of different shape of inlet oil-supply layer in the same starved degree on lubrication performance are studied. Under the same inlet oil supply volume, the convex type profile would present a better oil film within the nominal contact zone compared with other four different shapes of the inlet film supply.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Guohui Xu ◽  
Jian Zhou ◽  
Haipeng Geng ◽  
Mingjian Lu ◽  
Lihua Yang ◽  
...  

Journal misalignment usually exists in journal bearings that affect nearly all the bearings static and dynamic characteristics including minimum oil film thickness, maximum oil film pressure, maximum oil film temperature, oil film stiffness, and damping. The main point in this study is to provide a comprehensive analysis on the oil film pressure, oil film temperature, oil film thickness, load-carrying capacity, oil film stiffness, and damping of journal bearing with different misalignment ratios and appropriately considering the turbulent and thermo effects based on solving the generalized Reynolds equation and energy equation. The results indicate that the oil thermo effects have a significant effect on the lubrication of misaligned journal bearings under large eccentricity ratio. The turbulent will obviously affect the lubrication of misaligned journal bearings when the eccentricity or misalignment ratio is large. In the present design of the journal bearing, the load and speed become higher and higher, and the eccentricity and misalignment ratio are usually large in the operating conditions. Therefore, it is necessary to take the effects of journal misalignment, turbulent, and thermal effect into account in the design and analysis of journal bearings.


2012 ◽  
Vol 550-553 ◽  
pp. 3214-3218
Author(s):  
Jun Yan Zhang ◽  
Shu Kui Han

Based on the unified Reynolds equation model and fast Fourier transform (FFT) method, the lubrication performance of the piston pin bearing for high power density diesel engine was studied by numerical simulation. First of all, through the coupled solving of a unified Reynolds equation and elastic deformation equation, the orbit of journal center for piston pin bearing is investigated. The eccentricity ratio of the piston pin bearing in vertical direction of the piston stroke is smaller, however it is much larger in the downward direction of the piston stroke, which indicate that the below area of the piston pin bearing bears greater load and occurs larger deformation. This is consistent with the reality that the below area of the piston pin bearing is prone to damage and wear. Secondly, the influence of the different bearing clearances and width on the minimum oil film thickness is discussed, The results show that the minimum oil film thickness is increased, while the width of piston pin bearing is increased or the clearance of piston pin bearing is decreased.


2005 ◽  
Vol 127 (4) ◽  
pp. 813-819 ◽  
Author(s):  
Jun Sun ◽  
Changlin Gui ◽  
Zhiyuan Li

Journal bearing friction pair system is one of the most general and essential parts used in various mechanical devices. A special test bench is developed for the study on lubrication performance of cylindrical journal bearings. The effect of journal misalignment as a result of shaft bending under load is studied. The results show obvious changes at distribution and value of oil film pressure, oil film thickness and oil temperature of journal bearing due to journal misalignment. The higher the load on the shaft, the larger the journal misalignment resulted from shaft deformation, the more obvious effect on lubrication performance of journal bearing.


2018 ◽  
Vol 25 (s2) ◽  
pp. 30-34
Author(s):  
Teng Xian Bin ◽  
Zhang Jun Dong

Abstract The Craig-Bampton modal synthesis method was used to establish the dynamic model of marine four-stroke diesel engine body and crankshaft. Based on the Greenwood/Tripp microlong contact theory considering the surface roughness and the generalized Reynolds equation considering the oil filling rate, the elastohydrodynamic lubrication model of the main bearing of the four - stroke diesel engine is found. At the rated speed, the lubrication performance of the main bearing is simulated and analyzed by the maximum dynamic pressure, the minimum oil film thickness and the friction power. The results show that the oil pressure of 4 # main bearing is the largest and the maximum oil film pressure is in the 4 # main bearing position. The friction load of 4 # main bearing is the largest. The average oil film thickness of 4 # main bearing is the smallest and the minimum oil film The thickness also occurred in the 4 # main bearing position; it can be seen 4 # bearing the most bad lubrication conditions.


Sign in / Sign up

Export Citation Format

Share Document