scholarly journals Background Noise in Measuring Section of Low-Noise Acoustic Wind Tunnels. 1st Report. Analysis of Background Noise Sources in Measuring Section.

1995 ◽  
Vol 61 (590) ◽  
pp. 3741-3748
Author(s):  
Yoshiyuki Maruta ◽  
Gaku Minorikawa
Author(s):  
Wonhee Lee ◽  
Chanil Chun ◽  
Dongwook Kim ◽  
Soogab Lee

Complex transportation systems often produce combined exposure to aircraft and road noise. Depending on the noise source, the annoyance response is different, and a masking effect occurs between the noise sources within the combined noise. Considering these characteristics, partial loudness was adopted to evaluate noise annoyance. First, a partial loudness model incorporating binaural inhibition was proposed and validated. Second, short- and long-term annoyance models were developed using partial loudness. Finally, the annoyance of combined noise was visualized as a map. These models can evaluate the annoyance by considering both the intensity and frequency characteristics of the noise. In addition, it is possible to quantify the masking effect that occurs between noise sources. Combined noise annoyance maps depict the degree of annoyance of residents and show the background noise effect, which is not seen on general noise maps.


2021 ◽  
pp. 1-25
Author(s):  
Hanbo Jiang ◽  
Siyang Zhong ◽  
Han Wu ◽  
Xin Zhang ◽  
Xun Huang ◽  
...  

Abstract This paper focuses on the radiation modes and efficiency of propeller tonal noise. The thickness noise and loading noise model of propellers has been formulated in spherical coordinates, thereby simplifying numerical evaluation of the integral noise source. More importantly, the radiation field can be decomposed and projected to spherical harmonics, which can separate source-observer positions and enable an analysis of sound field structures. Thanks to the parity of spherical harmonics, the proposed model can mathematically explain the fact that thrusts only produce antisymmetric sound waves with respect to the rotating plane. In addition, the symmetric components of the noise field can be attributed to the thickness, as well as drags and radial forces acting on the propeller surface. The radiation efficiency of each mode decays rapidly as noise sources approach the rotating centre, suggesting the radial distribution of aerodynamic loadings should be carefully designed for low-noise propellers. The noise prediction model has been successfully applied to a drone propeller and achieved a reliable agreement with experimental measurements. The flow variables employed as an input of the noise computation were obtained with computational fluid dynamics (CFD), and the experimental data were measured in an anechoic chamber.


2019 ◽  
Vol 11 (7) ◽  
pp. 635-644 ◽  
Author(s):  
T. Shivan ◽  
E. Kaule ◽  
M. Hossain ◽  
R. Doerner ◽  
T. Johansen ◽  
...  

AbstractThis paper reports on an ultra-wideband low-noise distributed amplifier (LNDA) in a transferred-substrate InP double heterojunction bipolar transistor (DHBT) technology which exhibits a uniform low-noise characteristic over a large frequency range. To obtain very high bandwidth, a distributed architecture has been chosen with cascode unit gain cells. Each unit cell consists of two cascode-connected transistors with 500 nm emitter length and ft/fmax of ~360/492 GHz, respectively. Due to optimum line-impedance matching, low common-base transistor capacitance, and low collector-current operation, the circuit exhibits a low-noise figure (NF) over a broad frequency range. A 3-dB bandwidth from 40 to 185 GHz is measured, with an NF of 8 dB within the frequency range between 75 and 105 GHz. Moreover, this circuit demonstrates the widest 3-dB bandwidth operation among all reported single-stage amplifiers with a cascode configuration. Additionally, this work has proposed that the noise sources of the InP DHBTs are largely uncorrelated. As a result, a reliable prediction can be done for the NF of ultra-wideband circuits beyond the frequency range of the measurement equipment.


2012 ◽  
Vol 455-456 ◽  
pp. 1486-1490
Author(s):  
Jin Chen ◽  
Jiang Tao Cheng ◽  
Wen Zhong Shen

This paper presents the design methods of CQU-DTU-B21 airfoil for wind turbine. Compared with the traditional method of inverse design, the new method is described directly by a compound objective function to balance several conflicting requirements for design wind turbine airfoils, which based on design theory of airfoil profiles, blade element momentum (BEM) theory and airfoil Self-Noise prediction model. And then an optimization model with the target of maximum power performance on a 2D airfoil and low noise emission of design ranges for angle of attack has been developed for designing CQU-DTU-B21 airfoil. To validate the optimization results, the comparison of the aerodynamics performance by XFOIL and wind tunnels test respectively at Re=3×106 is made between the CQU-DTU-B21 and DU93-W-210 which is widely used in wind turbines.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yadong Zhang ◽  
Jiye Zhang ◽  
Tian Li ◽  
Liang Zhang ◽  
Weihua Zhang

A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H) acoustic analogy. An analysis of noise reduction methods based on the main noise sources was performed. An aerodynamic noise model for a full-scale high-speed train, including three coaches with six bogies, two inter-coach spacings, two windscreen wipers, and two pantographs, was established. Several low-noise design improvements for the high-speed train were identified, based primarily on the main noise sources; these improvements included the choice of the knuckle-downstream or knuckle-upstream pantograph orientation as well as different pantograph fairing structures, pantograph fairing installation positions, pantograph lifting configurations, inter-coach spacings, and bogie skirt boards. Based on the analysis, we designed a low-noise structure for a full-scale high-speed train with an average sound pressure level (SPL) 3.2 dB(A) lower than that of the original train. Thus, the noise reduction design goal was achieved. In addition, the accuracy of the aerodynamic noise calculation method was demonstrated via experimental wind tunnel tests.


Author(s):  
Tim Lieuwen ◽  
Andrzej Banaszuk

This paper considers the effects of background turbulent fluctuations upon a combustor’s stability boundaries. Inherent turbulent fluctuations act as both additive and parametric (also called multiplicative) excitation sources to acoustic waves in combustors. While additive noise sources exert primarily quantitative effects upon combustor oscillations, parametric noise sources can exert qualitative impacts upon its dynamics; particularly of interest here is their ability to destabilize a “nominally” stable system. The significance of these parametric noise sources increases with increased background noise levels and, thus, may play more of a role in realistic, high Reynolds number systems than experiments on simplified, lab scale combustors might suggest. The objective of this paper is to determine whether and/or when these effects might be significant. The analysis considers the effects of fluctuations in damping rate, frequency and combustion response. It is found that the effects of noisy damping and frequency upon the combustor’s stability limits is quite small, at least for the fluctuation intensities estimated here. The effects of a noisy combustion response, particularly of a fluctuating time delay between flow and heat release perturbations, can be quite significant, however, in some cases for turbulence intensities as low as <(u′/u¯)2>1/2∼5–10%. These results suggest that deterministic stability models calibrated on low turbulence intensity, lab scale combustors may not adequately describe the stability limits of realistic, highly turbulent combustors.


Author(s):  
Robert Jaron ◽  
Antoine Moreau ◽  
Sébastien Guérin ◽  
Lars Enghardt ◽  
Timea Lengyel-Kampmann ◽  
...  

Abstract Due to the increasing bypass ratios of modern engines, the fan stage is increasingly becoming the dominant source of engine noise. Accordingly, it is becoming more and more important to develop not only efficient but also quiet fan stages. In this paper the noise emission of a fan for an aero-engine with a bypass ratio of 19 is reduced within a multidisciplinary design optimization (MDO) by means of an hybrid noise prediction method while at the same time optimizing the aerodynamic efficiency. The aerodynamic performance of each configuration in the optimization is evaluated by stationary Reynolds-Averaged Navier-Stokes (RANS) simulations. These stationary flow simulations are also used to extract the aerodynamic excitation sources for the analytical fan noise prediction. The resulting large database of the optimization provides new insights into which extent an MDO can contribute to the design of both quiet and efficient fan stages. In addition to that the hybrid approach of numerical flow solutions and analytical description of the noise sources enables to understand the noise reduction mechanisms. In particular, the influence of rotor blade loading on the aerodynamic efficiency and the noise sources as well as the potential of configurations with a comparatively low number of outlet guide vanes (OGV) is explored. The acoustic results of selected configurations are confirmed by unsteady RANS simulations.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. E371-E383 ◽  
Author(s):  
Raphael Rochlitz ◽  
Matthias Queitsch ◽  
Pritam Yogeshwar ◽  
Thomas Günther ◽  
Andreas Chwala ◽  
...  

Transient electromagnetics (TEM) is a well-established method for mineral, groundwater, and geothermal exploration. Superconducting quantum interference device (SQUID)-based magnetic-field receivers used for TEM have quantitative advantages and higher sensitivity compared with commonly used induction coils. Special applications are deep soundings with target depths [Formula: see text] and settings with conductive overburden. However, SQUIDs have rarely been applied for TEM measurements in environments with significant anthropogenic noise. We compared a low-temperature SQUID with a commercially available induction coil in an area affected by anthropogenic noise. We acquired four fixed-loop data sets with totally 61 receiver stations close to Bad Frankenhausen, Germany. The high sensitivity of the SQUID enables low noise levels, which lead to longer high-quality transient data compared with the induction coil. The effect of anthropogenic and natural noise sources is more critical for the coil than for the SQUID data. In the vicinity of the transmitter loop, systematic distortion of the coil signals occurs at early times, most probably caused by sferic interferences. We have developed 1D inversion results of both receivers that matched well in general. However, the SQUID-based models were more consistent and showed greater depths of investigation. This led to a superior resolution of deeper layers and even enabled a potential detection of thin conducting targets at up to a 500 m depth. Moreover, we find that the SQUID data inversion revealed multidimensional effects within the conductive overburden. In this regard, we applied forward modeling to analyze systematic differences between inversion results of SQUID and coil data. We determine that low-temperature SQUIDs have the potential to significantly improve the reliability of subsurface models in suburban environments. Nevertheless, we recommend combined application of both types of receivers.


Sign in / Sign up

Export Citation Format

Share Document