scholarly journals Conjugate Heat Transfer Calculation of a Gas Turbine Rotor Blade with Ribbed Internal Cooling Passages

2007 ◽  
Vol 73 (727) ◽  
pp. 809-814
Author(s):  
Toshihiko TAKAHASHI ◽  
Kazunori WATANABE ◽  
Takayuki SAKAI
Author(s):  
A. Bonini ◽  
A. Andreini ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists of a conjugate heat transfer analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The first part of this work is focused on the description of the procedures in terms of set up of the equivalent fluid network model of internal cooling system and its tuning through experimental measurements of blade flow function. A first computation of blade metal temperature was obtained by coupling with CFD computations carried out on a de-featured geometry of the blade. Achieved results are compared with the data of a metallographic analysis performed on a blade operated on an actual engine. Some discrepancies are observed between datasets, suggesting the necessity to improve the models, mainly from the CFD side.


Author(s):  
M. Eifel ◽  
V. Caspary ◽  
H. Ho¨nen ◽  
P. Jeschke

This paper presents the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The analysis of the flow is performed experimentally with flow visualization via paint injection into water whereas the flow and the heat transfer are investigated numerically with Ansys CFX utilizing the SST turbulence model. Two sets of calculations are carried out, one under the same conditions as the experiments and another according to realistic hot gas conditions with conjugate heat transfer. The aim is to identify flow phenomena altering the heat transfer in the blade and to manipulate them in order to reduce the thermal load of the material. The operating point of the geometric base configuration is set to Re = 50,000 at the inlet while for the modified geometries the pressure ratio is held constant compared to the base. Flow structures and heat transfer conditions are evaluated and are linked to specific geometric features. Among several investigated configurations one could be identified that leads to a cooling effectiveness 15% larger compared to the base.


Author(s):  
A. A. Ameri ◽  
E. Steinthorsson

Predictions of the rate of heat transfer to the tip and shroud of a gas turbine rotor blade are presented. The simulations are performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations. The effect of inlet boundary layer thickness as well as rotation rate on the tip and shroud heat transfer is examined. The predictions of the blade tip and shroud heat transfer are in reasonable agreement with the experimental measurements. Areas of large heat transfer rates are identified and physical reasoning for the phenomena presented.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
M. Eifel ◽  
V. Caspary ◽  
H. Hönen ◽  
P. Jeschke

This paper presents the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The analysis of the flow is performed experimentally with flow visualization via paint injection into water, whereas the flow and the heat transfer are investigated numerically with ANSYS CFX, utilizing the SST turbulence model. Two sets of calculations are carried out: one under the same conditions as the experiments and another according to realistic hot gas conditions with conjugate heat transfer. The aim is to identify flow phenomena altering the heat transfer in the blade and to manipulate them in order to reduce the thermal load of the material. The operating point of the geometric base configuration is set to Re=50,000 at the inlet while for the modified geometries, the pressure ratio is held constant compared with the base. Flow structures and heat transfer conditions are evaluated and are linked to specific geometric features. Among several investigated configurations one could be identified that leads to a cooling effectiveness 15% larger compared with the base.


Author(s):  
Kazuhiro Tsukamoto ◽  
Yasuhiro Horiuchi ◽  
Kazuyuki Sugimura ◽  
Shinichi Higuchi

Conjugate Heat Transfer (CHT) was analyzed in a first stage rotor blade in an actual gas turbine. The main objectives of this research were to simulate and validate improvements to the accuracy of predicting temperature on the surfaces of rotor blades in a gas turbine and compare these with experimental results. This simulation was carried out under similar conditions to those during gas turbine operation. Computational grids were generated based on CAD data obtained from the rotor blades with fully resolved rib turbulators and pin fins for both fluid and solid domains during CHT analysis. A tetrahedral mesh with prism layers was used and the y+ of the first mesh adjacent to the wall was kept at less than 1.0 over the whole surface. Thermal barrier coating was modeled by adding thermal resistance at the fluid-solid interfaces. Inlet boundary conditions for the external- and internal-gas-flow regions were defined based on one-dimensional analysis and measured results. Steady Reynolds-averaged Navier-Stokes simulation was carried out using the Shear Stress Transport (SST) turbulence model. The simulated results were compared with measured data obtained from a pyrometer and thermocouple. The temperature distributions predicted from CHT analysis agreed with those obtained from an experiment near the leading edge of the rotor blades. However, the temperature distribution at the center of the pressure side had a difference of 50 K with that obtained from the experimental data. The heat transfer coefficients on the surfaces of the blades were almost equal to those on the pressure side. Thus, we considered that the internal cooling flows contributed more to temperature distributions on the surfaces of the blades rather than the external gas flows. The main stream in the internal cooling flow passages leaned toward one side of the walls and the temperatures on this side became lower than those obtained from the experimental results. Therefore, we suspect CHT analysis underestimated the mixing effect generated by the rib turbulators. It is important to solve the complex flow phenomena in internal cooling passages to better predict the accuracy of temperature distributions on the surfaces of blades.


Author(s):  
M. J. Rigby ◽  
A. B. Johnson ◽  
M. L. G. Oldfield

Detailed heat transfer measurements have been made around a film-cooled transonic gas turbine rotor blade in the Oxford Isentropic Light Piston Tunnel. Film cooling behaviour for four film cooling configurations has been analysed for a range of blowing rates both without and with simulated nozzle guide vane (NGV) shock wave and wake passing. The superposition model of film cooling has been employed in analysis of time-mean heat transfer data, while time resolved unsteady heat transfer measurements have been analysed to determine interaction between film-cooling and unsteady shock wave and wake passing. It is found that there is a significant change of film-cooling behaviour on the suction surface when simulated NGV unsteady effects are introduced.


Sign in / Sign up

Export Citation Format

Share Document