Conjugate Heat Transfer Analysis in an Actual Gas Turbine Rotor Blade in Comparison With Pyrometer Data

Author(s):  
Kazuhiro Tsukamoto ◽  
Yasuhiro Horiuchi ◽  
Kazuyuki Sugimura ◽  
Shinichi Higuchi

Conjugate Heat Transfer (CHT) was analyzed in a first stage rotor blade in an actual gas turbine. The main objectives of this research were to simulate and validate improvements to the accuracy of predicting temperature on the surfaces of rotor blades in a gas turbine and compare these with experimental results. This simulation was carried out under similar conditions to those during gas turbine operation. Computational grids were generated based on CAD data obtained from the rotor blades with fully resolved rib turbulators and pin fins for both fluid and solid domains during CHT analysis. A tetrahedral mesh with prism layers was used and the y+ of the first mesh adjacent to the wall was kept at less than 1.0 over the whole surface. Thermal barrier coating was modeled by adding thermal resistance at the fluid-solid interfaces. Inlet boundary conditions for the external- and internal-gas-flow regions were defined based on one-dimensional analysis and measured results. Steady Reynolds-averaged Navier-Stokes simulation was carried out using the Shear Stress Transport (SST) turbulence model. The simulated results were compared with measured data obtained from a pyrometer and thermocouple. The temperature distributions predicted from CHT analysis agreed with those obtained from an experiment near the leading edge of the rotor blades. However, the temperature distribution at the center of the pressure side had a difference of 50 K with that obtained from the experimental data. The heat transfer coefficients on the surfaces of the blades were almost equal to those on the pressure side. Thus, we considered that the internal cooling flows contributed more to temperature distributions on the surfaces of the blades rather than the external gas flows. The main stream in the internal cooling flow passages leaned toward one side of the walls and the temperatures on this side became lower than those obtained from the experimental results. Therefore, we suspect CHT analysis underestimated the mixing effect generated by the rib turbulators. It is important to solve the complex flow phenomena in internal cooling passages to better predict the accuracy of temperature distributions on the surfaces of blades.

Author(s):  
A. Bonini ◽  
A. Andreini ◽  
C. Carcasci ◽  
B. Facchini ◽  
A. Ciani ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way turbine components heat load management has become a compulsory activity and then, a reliable procedure to evaluate the blades and vanes metal temperatures, is, nowadays, a crucial aspect for a safe components design. This two part work presents a three-dimensional conjugate heat transfer procedure developed in the framework of an internal research project of GE Oil & Gas. The procedure, applied to the first rotor blade of the MS5002E gas turbine, consists of a conjugate heat transfer analysis in which the internal cooling system was modeled by an in-house one dimensional thermo-fluid network solver, the external heat loads and pressure distribution have been evaluated through 3D CFD and the heat conduction in the solid is carried out through a 3D FEM solution. The first part of this work is focused on the description of the procedures in terms of set up of the equivalent fluid network model of internal cooling system and its tuning through experimental measurements of blade flow function. A first computation of blade metal temperature was obtained by coupling with CFD computations carried out on a de-featured geometry of the blade. Achieved results are compared with the data of a metallographic analysis performed on a blade operated on an actual engine. Some discrepancies are observed between datasets, suggesting the necessity to improve the models, mainly from the CFD side.


Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

The detailed distributions of heat transfer coefficient and film cooling effectiveness on a gas turbine blade tip were measured using a hue detection based transient liquid crystal technique. Tests were performed on a five-bladed linear cascade with blow down facility. The blade was a 2-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The Reynolds number based on cascade exit velocity and axial chord length was 1.1 × 106 and the total turning angle of the blade was 97.7°. The overall pressure ratio was 1.32 and the inlet and exit Mach number were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. The blade model was equipped with a single row of film cooling holes at both the tip portion along the camber line and near the tip region of the pressure-side. All measurements were made at the three different tip gap clearances of 1%, 1.5%, and 2.5% of blade span and the three blowing ratios of 0.5, 1.0, and 2.0. Results showed that, in general, heat transfer coefficient and film effectiveness increased with increasing tip gap clearance. As blowing ratio increased, heat transfer coefficient decreased, while film effectiveness increased. Results also showed that adding pressure-side coolant injection would further decrease blade tip heat transfer coefficient but increase film effectiveness.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Lorenzo Winchler ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Andrei ◽  
Alessio Bonini ◽  
...  

Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.


Author(s):  
Yaping Ju ◽  
Yi Feng ◽  
Chuhua Zhang

Abstract Reynolds averaged Navier-Stokes model-based conjugate heat transfer method is popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing its prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies adopted the same turbulence models in passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver for subsonic/transonic flows was developed based on OpenFOAM and validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, able to weigh the losses caused by flow friction and heat transfer, was used in the analyses of two internally cooled vanes to reveal the loss mechanisms. Findings indicate that the combination of the k-? SST-?-Re? transition model for passage flow and the standard k-e model for internal cooling agreed best with measurement data. The relative error of vane dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, providing a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of internally cooled gas turbine blades.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1007 ◽  
Author(s):  
Du ◽  
Mei ◽  
Zou ◽  
Jiang ◽  
Xie

Numerical calculation of conjugate heat transfer was carried out to study the effect of combined film and swirl cooling at the leading edge of a gas turbine vane with a cooling chamber inside. Two cooling chambers (C1 and C2 cases) were specially designed to generate swirl in the chamber, which could enhance overall cooling effectiveness at the leading edge. A simple cooling chamber (C0 case) was designed as a baseline. The effects of different cooling chambers were studied. Compared with the C0 case, the cooling chamber in the C1 case consists of a front cavity and a back cavity and two cavities are connected by a passage on the pressure side to improve the overall cooling effectiveness of the vane. The area-averaged overall cooling effectiveness of the leading edge () was improved by approximately 57%. Based on the C1 case, the passage along the vane was divided into nine segments in the C2 case to enhance the cooling effectiveness at the leading edge, and was enhanced by 75% compared with that in the C0 case. Additionally, the cooling efficiency on the pressure side was improved significantly by using swirl-cooling chambers. Pressure loss in the C2 and C1 cases was larger than that in the C0 case.


Author(s):  
Toshihiko Takahashi ◽  
Kazunori Watanabe ◽  
Takayuki Sakai

In order to predict temperature distribution of a rotor blade in a gas turbine on a rated condition, numerical analyses of conjugate heat transfer of the internally cooled blade were conducted. The target blade has rib-roughened internal cooling passages. Three-dimensional steady-state numerical analysis was executed with one-dimensional thermo-flow calculation of internal cooling by means of thermal conjugation of inside and outside fields of the blade, which consists of convection heat transfer around the blade, thermal conduction of the blade material and internal cooling. The one-dimensional thermo-flow calculation for the internal cooling was conducted with correlations of friction and heat transfer in rib-roughened channels, and combined with the 3-D analysis of the blade. The present prediction of the temperature profile on the blade coincides with the distinctive features of damage on actual ex-service blades. Moreover, that predicted temperature profile is in agreement with local temperature estimated by using the material of the actual ex-service blades. Influences of distribution of inlet gas temperature and of cooling conditions on the blade temperature were also investigated by using the present numerical procedure.


2014 ◽  
Vol 6 ◽  
pp. 146523 ◽  
Author(s):  
Leiyong Jiang ◽  
Xijia Wu ◽  
Zhong Zhang

In order to assess the life of gas turbine critical components, it is essential to adequately specify their aerothermodynamic working environments. Steady-state analyses of the flow field and conjugate heat transfer of an internally air-cooled nozzle guide vane (NGV) and shrouds of a gas turbine engine at baseline operating conditions are numerically investigated. A high-fidelity CFD model is generated and the simulations are carried out with properly defined boundary conditions. The features of the complicated flow and temperature fields are revealed. In general, the Mach number is lower and the temperature is higher on the NGV pressure side than those on the suction side. There are two high temperature regions on the pressure side, and the temperature across the middle section is relatively low. These findings are closely related to the locations of the holes and outlets of the cooling flow passage, and consistent with the field observations of damaged NGVs. As a technology demonstration, the results provide required information for the life analysis of the NGV/shrouds assembly and improvement of the cooling flow arrangement.


Sign in / Sign up

Export Citation Format

Share Document