scholarly journals Development of Hierarchical Optimization Design Method Using Component Mode Synthesis Method. Application to Optimization of Dynamic Response.

1995 ◽  
Vol 61 (587) ◽  
pp. 2668-2674
Author(s):  
Takuzo Iwatsubo ◽  
Shozo Kawamura ◽  
Junya Enomoto
2005 ◽  
Vol 42 (5) ◽  
pp. 1375-1375 ◽  
Author(s):  
Shinkyu Jeong ◽  
Mitsuhiro Murayama ◽  
Kazuomi Yamamoto

2020 ◽  
Vol 38 (10A) ◽  
pp. 1481-1488
Author(s):  
Tariq M. Hammza ◽  
Ehab N. Abas ◽  
Nassear R. Hmoad

The values of Many parameters which involve in the design of fluid film journal bearings mainly depend on the bearing applied load when using the conventional design method to design the journal bearings, in this study, as well as applied bearing load, the dynamic response and critical speed have been used to calculate the dimensions of journal bearings. In the field of rotating machine, especially a heavy-duty rotating machines, the critical speed and response are the main parameters that specify bearing dimensions. The bearing aspect ratio (bearing length to bore diameter) and bearing clearance have been determined based on rotor maximum critical speed and minimum response displacement. The analytical solution of rotor Eq. of motion was verified by numerical solution via using ANSYS Mechanical APDL 18.0 and by comparing the numerical solution with the preceding study. The final study results clearly showed that the bearing aspect ratio has little effect on the critical speed, but it has a high effect on the dynamic response also the bearing clearance has little effect on the critical speed and considerable effect on the dynamic response. The study showed that the more accurate values of bearing aspect ratio to make the response of rotor as low as possible are about 0.65 - 1 and bearing percent clearance is about 0.15 - 0.2 for different rotor dimensions.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Tomoya Sakaguchi ◽  
Kazuyoshi Harada

In order to investigate cage stress in tapered roller bearings, a dynamic analysis tool considering both the six degrees of freedom of motion of the rollers and cage and the elastic deformation of the cage was developed. Cage elastic deformation is equipped using a component-mode-synthesis (CMS) method. Contact forces on the elastically deforming surfaces of the cage pocket are calculated at all node points of finite-elements on it. The location and pattern of the boundary points required for the component-mode-synthesis method were examined by comparing cage stresses in a static condition of pocket forces and constraints calculated by using the finite-element and the CMS methods. These results indicated that one boundary point lying at the center on each bar is appropriate for the effective dynamic analysis model focusing on the cage stress, especially at the pocket corners of the cages, which are actually broken. A behavior measurement of a polyamide cage in a tapered roller bearing was conducted for validating the analysis model. It was confirmed in both the experiment and analysis that the cage whirled under a large axial load condition and the cage center oscillated in a small amplitude under a small axial load condition. In the analysis, the authors discussed the four models including elastic bodies having a normal eigenmode of 0, 8 or 22, and rigid-body. There were small differences among the cage center loci of the four models. These two cages having normal eigenmodes of 0 and rigid-body whirled with imperceptible fluctuations. At least approximately 8 normal eigenmodes of cages should be introduced to conduct a more accurate dynamic analysis although the effect of the number of normal eigenmodes on the stresses at the pocket corners was insignificant. From the above, it was concluded to be appropriate to introduce one boundary point lying at the center on each pocket bar of cages and approximately 8 normal eigenmodes to effectively introduce the cage elastic deformations into a dynamic analysis model.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2002 ◽  
Vol 124 (2) ◽  
pp. 278-285 ◽  
Author(s):  
Gang Liu ◽  
Zhongqin Lin ◽  
Youxia Bao

In the tooling design of autobody cover panels, design of drawbead will affect the distribution of drawing restraining force along mouth of dies and the relative flowing velocity of the blank, and consequently, will affect the distributions of strain and thickness in a formed part. Therefore, reasonable design of drawbead is the key point of cover panels’ forming quality. An optimization design method of drawbead, using one improved hybrid optimization algorithm combined with FEM software, is proposed in this paper. First, we used this method to design the distribution of drawbead restraining force along the mouth of a die, then the actual type and geometrical parameters of drawbead could be obtained according to an improved drawbead restraining force model and the improved hybrid optimization algorithm. This optimization method of drawbead was used in designing drawing tools of an actual autobody cover panel, and an optimized drawbead design plan has been obtained, by which deformation redundancy was increased from 0% under uniform drawbead control to 10%. Plastic strain of all area of formed part was larger than 2% and the minimum flange width was larger than 10 mm. Therefore, not only better formability and high dent resistance were obtained, but also fine cutting contour line and high assembly quality could be obtained. An actual drawing part has been formed using the optimized drawbead, and the experimental results were compared with the simulating results in order to verify the validity of the optimized design plan. Good agreement of thickness on critical areas between experimental results and simulation results proves that the optimization design method of drawbead could be successfully applied in designing actual tools of autobody cover panels.


Sign in / Sign up

Export Citation Format

Share Document