scholarly journals Attenuation of Intestinal Efflux Pump thru Polymers and Preservatives

2019 ◽  
Vol 23 (4) ◽  
pp. 632-641
Author(s):  
Ramin MOHAMMADZADEH ◽  
Behzad BARADARAN ◽  
Bahman YOUSEFI ◽  
Hadi VALIZADEH ◽  
Parvin ZAKERI-MILANI
INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (4) ◽  
pp. 23-27
Author(s):  
Sarika Narade ◽  
Yogesh Pore ◽  
◽  

The present study investigates the influence of co-administration of different concentrations (2, 6, and 10 mg) of curcumin on goat intestinal permeability of berberine chloride (BBC) using Franz diffusion cell. Data obtained in triplicate from permeability studies were used to calculate percentage cumulative drug release (% CDR), apparent permeability (Papp), flux (J) and enhancement ratio (ER). Co-administration of 6 mg concentration of curcumin with BBC was found to be optimum to enhance the permeability of BBC up to 23.92 ± 0.78 % CDR, over control (8.49 ± 1.45 % CDR). At the optimized concentration of curcumin, permeability characteristics were improved significantly compared to control. The present study reveals the beneficial effect of co-administration of curcumin (6 mg) to promote membrane permeability of BBC which would be expected to improve its bioavailability, thereby therapeutic efficacy. The effect could be attributed to curcumin-mediated inhibition of intestinal efflux pump P-gp, acting as an absorption barrier for BBC.


2015 ◽  
Vol 51 (3) ◽  
pp. 745-753 ◽  
Author(s):  
Darya Hodaei ◽  
Behzad Baradaran ◽  
Hadi Valizadeh ◽  
Parvin Zakeri-Milani

The present study was planned to investigate the influence of polyethylene glycols (PEGs) on the activity and expression of P-glycoprotein (P-gp). Sub-toxic concentrations of PEGs in Caco-2 cells were determined using the MTT test assay. Then the measurement of Rhodamine-123 (Rho-123) uptake, a P-gp fluorescence substrate, in Caco-2 cells confronting PEG 400 (1% and 2% w/v), PEG 4000 (2% and 4% w/v), PEG 6000 (2% and 4% w/v), PEG 10000 (2% and 4% w/v), PEG 15000 (1% and 2% w/v), and PEG 35000 (2% and 4% w/v) overnight was taken to elucidate whether non-toxic concentrations of PEGs are able to impact P-gp activity. Furthermore, western blotting was carried out to investigate P-gp protein expression. The results showed that PEG 400 at concentrations of 1% (w/v) and 2% (w/v) and PEG 6000 at the concentration of 4% (w/v) are notably capable of blocking P-gp. Based on the obtained results it is concluded that the mentioned excipients could be used to obstruct P-gp efflux transporter in order to increase the bioavailability of co-administered substrate drug.


Sign in / Sign up

Export Citation Format

Share Document