substrate drug
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Li ◽  
Yue-E Wu ◽  
Kai Wang ◽  
Hai-Yan Shi ◽  
Yue Zhou ◽  
...  

Objective: The elucidation of CYP2D6 developmental pharmacogenetics in children has improved, however, these findings have been largely limited to studies of Caucasian children. Given the clear differences in CYP2D6 pharmacogenetic profiles in people of different ancestries, there remains an unmet need to better understand the developmental pharmacogenetics in populations of different ancestries. We sought to use loratadine as a substrate drug to evaluate the effects of ontogeny and pharmacogenetics on the developmental pattern of CYP2D6 in Chinese pediatric patients.Methods: Chinese children receiving loratadine treatment were enrolled in the present study. The metabolite-to-parent ratio (M/P ratio), defined as the molar ratio of desloratadine to loratadine of trough concentrations samples at steady-state condition, was used as a surrogate of CYP2D6 activity. Loratadine and desloratadine were determined by LC/MS/MS method. Variants of CYP2D6 were genotyped by polymerase chain reaction for CYP2D6 *4, *10, *41 and long polymerase chain reaction for CYP2D6 *5.Results: A total of 40 patients were available for final analysis. The mean age was 4.50 (range 0.50–9.00) years and the mean weight was 19.64 (range 7.00–42.00) kg. The M/P ratio was significantly lower in intermediate metabolizers (IMs) compared to normal metabolizers (NMs) (10.18 ± 7.97 vs. 18.80 ± 15.83, p = 0.03). Weight was also found to be significantly associated with M/P ratio (p = 0.03).Conclusion: The developmental pharmacogenetics of CYP2D6 in Chinese children was evaluated using loratadine as a substrate drug. This study emphasizes the importance of evaluating the developmental pharmacogenetics in populations of different ancestries.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 899
Author(s):  
Jun-Sung Oh ◽  
Jun-Hwee Jang ◽  
Eun-Jung Lee

Two-dimensional (2D) graphene oxide (GO) exhibits a high drug loading capacity per unit mass due to its unique structure and hydrophilicity and has been widely researched for drug-delivery systems. Here, we modified the surfaces of metal implants; we applied GO-based coatings that controlled drug loading and release. We used electrophoretic deposition (EPD) to apply the coatings at room temperature. The EPD coatings were analyzed in terms of their components, physical properties such as hardness and hydrophilicity, and in vitro cell tests of their biological properties. Uniform GO-EPD coatings improved surface hydrophilicity and hardness and greatly improved the bone differentiation properties of the metal substrate. Drug loading and release increased greatly compared to when the drug was adsorbed to only the surface of a coating. GO facilitated deposition of a drug-containing coating via EPD, and the surface modification, and drug loading and release, were controlled by the thickness of the coating.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun-Qing Song ◽  
Rong-Jing He ◽  
Dan Pu ◽  
Xiao-Qing Guan ◽  
Jin-Hui Shi ◽  
...  

Human carboxylesterase 2 (CES2), one of the most abundant hydrolases distributed in the small intestine, has been validated as a key therapeutic target to ameliorate the intestinal toxicity caused by irinotecan. This study aims to discover efficacious CES2 inhibitors from natural products and to characterize the inhibition potentials and inhibitory mechanisms of the newly identified CES2 inhibitors. Following high-throughput screening and evaluation of the inhibition potency of more than 100 natural products against CES2, it was found that the biflavones isolated from Ginkgo biloba displayed extremely potent CES2 inhibition activities and high specificity over CES1 (>1000-fold). Further investigation showed that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed hydrolysis of various substrates, including the CES2 substrate-drug irinotecan. Notably, the inhibition potentials of four biflavones against CES2 were more potent than that of loperamide, a marketed anti-diarrhea agent used for alleviating irinotecan-induced intestinal toxicity. Inhibition kinetic analyses demonstrated that ginkgetin, bilobetin, sciadopitysin and isoginkgetin potently inhibited CES2-catalyzed fluorescein diacetate hydrolysis via a reversible and mixed inhibition manner, with Ki values of less than 100 nM. Ensemble docking and molecular dynamics revealed that these biflavones could tightly and stably bind on the catalytic cavity of CES2 via hydrogen bonding and π-π stacking interactions, while the interactions with CES1 were awfully poor. Collectively, this study reports that the biflavones isolated from Ginkgo biloba are potent and highly specific CES2 inhibitors, which offers several promising lead compounds for developing novel anti-diarrhea agent to alleviate irinotecan-induced diarrhea.


2020 ◽  
Vol 21 (14) ◽  
pp. 4816
Author(s):  
Nokwanda Samantha Ngcobo ◽  
Zinhle Edith Chiliza ◽  
Wanping Chen ◽  
Jae-Hyuk Yu ◽  
David R. Nelson ◽  
...  

Cytochrome P450 monooxygenases (CYPs/P450s) are well known for their role in organisms’ primary and secondary metabolism. Among 20 P450s of the tuberculosis-causing Mycobacterium tuberculosis H37Rv, CYP128A1 is particularly important owing to its involvement in synthesizing electron transport molecules such as menaquinone-9 (MK9). This study employs different in silico approaches to understand CYP128 P450 family’s distribution and structural aspects. Genome data-mining of 4250 mycobacterial species has revealed the presence of 2674 CYP128 P450s in 2646 mycobacterial species belonging to six different categories. Contrast features were observed in the CYP128 gene distribution, subfamily patterns, and characteristics of the secondary metabolite biosynthetic gene cluster (BGCs) between M. tuberculosis complex (MTBC) and other mycobacterial category species. In all MTBC species (except one) CYP128 P450s belong to subfamily A, whereas subfamily B is predominant in another four mycobacterial category species. Of CYP128 P450s, 78% was a part of BGCs with CYP124A1, or together with CYP124A1 and CYP121A1. The CYP128 family ranked fifth in the conservation ranking. Unique amino acid patterns are present at the EXXR and CXG motifs. Molecular dynamic simulation studies indicate that the CYP128A1 bind to MK9 with the highest affinity compared to the azole drugs analyzed. This study provides comprehensive comparative analysis and structural insights of CYP128A1 in M. tuberculosis.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 593 ◽  
Author(s):  
Jaeok Lee ◽  
Song Wha Chae ◽  
LianJi Ma ◽  
So Yeon Lim ◽  
Sarah Alnajjar ◽  
...  

P-glycoprotein (P-gp) is known to be involved in multidrug resistance (MDR) and modulation of pharmacokinetic (PK) profiles of substrate drugs. Here, we studied the effects of synthesized ferulic acid (FA) derivatives on P-gp function in vitro and examined PK alteration of paclitaxel (PTX), a well-known P-gp substrate drug by the derivative. Compound 5c, the FA derivative chosen as a significant P-gp inhibitor among eight FA candidates by in vitro results, increased PTX AUCinf as much as twofold versus the control by reducing PTX elimination in rats. These results suggest that FA derivative can increase PTX bioavailability by inhibiting P-gp existing in eliminating organs.


2017 ◽  
Vol 58 (12) ◽  
pp. 2310-2323 ◽  
Author(s):  
Medhanie E. Kidane ◽  
Boden H. Vanderloop ◽  
Wenxu Zhou ◽  
Crista D. Thomas ◽  
Emilio Ramos ◽  
...  

2017 ◽  
Vol 34 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Mohamed Mokhtar ◽  
Patrick Gosselin ◽  
François Lacasse ◽  
Patrice Hildgen

Biochemistry ◽  
2016 ◽  
Vol 55 (28) ◽  
pp. 3888-3898 ◽  
Author(s):  
Ayumi Yamada ◽  
Nobutaka Shimizu ◽  
Takaaki Hikima ◽  
Masaki Takata ◽  
Toshihide Kobayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document