scholarly journals Phytoconstituents in the Management of Pesticide Induced Parkinson’s Disease- A Review

2019 ◽  
Vol 12 (3) ◽  
pp. 1417-1424
Author(s):  
Manasa K ◽  
Chitra V

Recent studies have suggested that environmental factors have a crucial role in triggering and/ or propagating the pathological changes in Parkinson’s disease (PD). Although many studies have been and being performed by utilizing MPTP like chemicals to study the effectiveness of new extracts and compounds in PD, a little focus was made on the role of pesticides. Since agricultural fields account for 37.7% of land area worldwide and the use of pesticides is an important risk factor in neurodegeneration, there is a crucial need to focus on the association between pesticides and PD. Benomyl, a benzimidazole fungicide is being widely used in India in cultivation of tropical crops. Studies prove the chronic exposure of benomyl leads to aldehyde dehydrogenase inhibition caused DOPAL toxicity, subsequently leading to dopamine degradation and Parkinson’s disease. Till date, there is no remedy for pesticide induced Parkinson’s disease. This review provides an insight of the pathophysiological aspects of pesticide induced Parkinson’s disease and also enlightens the importance of aldehyde dehydrogenase enzyme in neuroprotection.

Author(s):  
Tamilanban T ◽  
Manasa K ◽  
Chitra V

Background: Parkinson’s disease (PD) exhibits the extra pyramidal symptoms caused due to the dopaminergic neuronal degeneration in the substantia nigra of the brain and depletion of aldehyde dehydrogenase (ALDH) enzyme. Objective: This study was designed to enlighten the importance of Aldehyde dehydrogenase enzyme in protecting the dopamine levels in a living system. Camalexin, a potentially active compound has been evaluated for its dopamine enhancing and aldehyde dehydrogenase protecting role in pesticide induced Parkinson’s disease. Methods: AutoDock 4.2 software was employed to perform the docking simulations between the ligand camalexin and standard drugs Alda-1, Ropirinole with three proteins 4WJR, 3INL, 5AER. Consequently, the compound was evaluated for its in vivo neuroprotective role in zebrafish model by attaining Institutional Animal Ethical Committee permission. The behavioral assessments and catecholamine analysis in zebrafish were performed. Results: The Autodock result shows that the ligand camalexin has a lower binding energy (-3.84) that indicate higher affinity with the proteins when compared to the standard drug of proteins (-3.42). In zebrafish model, behavioral studies provided an evidence that camalexin helps in improvement of motor functions and cognition. The catecholamine assay has proved there is an enhancement in dopamine levels, as well as an improvement in aldehyde dehydrogenase enzyme also. Conclusion: The novel compound, camalexin, hence offers a protective role in Parkinson’s disease model by its interaction with neurochemical proteins and also in alternative in vivo model.


2011 ◽  
Vol 42 (01) ◽  
Author(s):  
J. Pohlmann ◽  
A. Sprenger ◽  
C. Helmchen

2016 ◽  
Vol 23 (24) ◽  
pp. 2666-2679 ◽  
Author(s):  
Félix Jiménez-Jiménez ◽  
Hortensia Alonso-Navarro ◽  
María Herrero ◽  
Elena García-Martín ◽  
José Agúndez

2019 ◽  
Vol 26 (20) ◽  
pp. 3719-3753 ◽  
Author(s):  
Natasa Kustrimovic ◽  
Franca Marino ◽  
Marco Cosentino

:Parkinson’s disease (PD) is the second most common neurodegenerative disorder among elderly population, characterized by the progressive degeneration of dopaminergic neurons in the midbrain. To date, exact cause remains unknown and the mechanism of neurons death uncertain. It is typically considered as a disease of central nervous system (CNS). Nevertheless, numerous evidence has been accumulated in several past years testifying undoubtedly about the principal role of neuroinflammation in progression of PD. Neuroinflammation is mainly associated with presence of activated microglia in brain and elevated levels of cytokine levels in CNS. Nevertheless, active participation of immune system as well has been noted, such as, elevated levels of cytokine levels in blood, the presence of auto antibodies, and the infiltration of T cell in CNS. Moreover, infiltration and reactivation of those T cells could exacerbate neuroinflammation to greater neurotoxic levels. Hence, peripheral inflammation is able to prime microglia into pro-inflammatory phenotype, which can trigger stronger response in CNS further perpetuating the on-going neurodegenerative process.:In the present review, the interplay between neuroinflammation and the peripheral immune response in the pathobiology of PD will be discussed. First of all, an overview of regulation of microglial activation and neuroinflammation is summarized and discussed. Afterwards, we try to collectively analyze changes that occurs in peripheral immune system of PD patients, suggesting that these peripheral immune challenges can exacerbate the process of neuroinflammation and hence the symptoms of the disease. In the end, we summarize some of proposed immunotherapies for treatment of PD.


2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


Sign in / Sign up

Export Citation Format

Share Document