Systematic Water-Saving Management for Strawberry in Basic Greenhouses Based on the Internet of Things

2021 ◽  
Vol 37 (1) ◽  
pp. 205-217
Author(s):  
Qun Li ◽  
Bing Cao ◽  
Xing Wang ◽  
Jiu Jiang Wu ◽  
You Ke Wang

A new application of the internet of things in a low-cost greenhouse with no networked intelligent control equipment.The systematic water-saving management focused over the whole growth stage of crops, and it can effectively increase yield and quality.Replace some chemical fertilizer with fully-decomposed organic fertilizer and new types of fertilizer to reduce negative impact on soil and the environment.Regarding pesticide usage, we advocate prevention first and treatment second.Improve systematic water-saving management with regard decreases in crop yield and quality.Abstract. A basic greenhouse is an inexpensive type of greenhouse, which lacks networked intelligent control equipment; it is currently the most common type of greenhouse used in China. To manage planting activities intelligently and improve water use efficiency in these greenhouses, an intelligent planting management platform for strawberry based on the internet of things (IoT) is developed. On the platform, human-computer interaction occurs through the WeChat app on a mobile phone so that manual control of the strawberry environment in the greenhouse can be conducted. In this study, we add a user module in the perception layer of the IoT to obtain the information and manually control the environment in a basic greenhouse. The network layer uses narrowband IoT wireless transmission technology based on 4G. The application layer is designed with a systematic water-saving management knowledge base for strawberry. The systematic water-saving management feature includes seven parts: strawberry variety selection, planting seedlings, flower and fruit thinning, environmental control, disease and pest prevention and treatment, fertilizer management, and water-saving irrigation. Through the human–computer interaction platform, growers can receive decision-making options, planting management evaluation, query information retrieval, and regular relevant planting information. The application results of the platform showed the following: compared with management experience of growers, the water use efficiency of yield (WUEy) increased by 128.55%, the water use efficiency of production value (WUEpy) increased by 226.31%; the amount of chemical fertilizer decreased by 40%, the amount of pesticide decreased by 61.67%, and the cost of pesticide decreased by 32.48%; thus a decrease in the use of both fertilizer and pesticide was achieved. This study can directly provide technical support for strawberry intelligent management in basic greenhouses, and can also be used as a basic platform intelligent management systems for other crops grown in basic greenhouses. Keywords: Basic greenhouse, Intelligent agriculture, Internet of things, Sensor network , Systematic water-saving management, Water-use efficiency.

Author(s):  
Abiodun Emmanuel Abioye ◽  
Mohammad Shukri Zainal Abidin ◽  
Mohd Saiful Azimi Mahmud ◽  
Salinda Buyamin ◽  
Mohamad Hafis Izran Ishak ◽  
...  

The demand for freshwater and food is on the increase due to the rapid growth in the world’s population, while the effect of global warming and climate change poses a severe threat on water use and food security. Conventional irrigation system suffers due to an inefficient management of water and energy, while insufficient supply of water to plant increases their stress which often affects its growth and development. Hence, there is a need to increase research focus on water use efficiency in irrigation agriculture. This paper is aimed at investigating the performance of smart drip and subsurface fibrous capillary irrigation experiment for the cultivation of cantaloupe plant to increase the yield and quality of fruit while decreasing the water and energy usage. To achieve enhancement of subsurface fibrous capillary and drip irrigation system, an Internet of Things (IoT) approach was used to improve monitoring of soil, weather, plant and control of water application. The performance comparisons of both methods was evaluated in terms of water-saving in greenhouse cultivation experiment. The results obtained, shows that the smart fibrous capillary irrigation has water use efficiency of 19 g/Litre with average fruit sweetness of13.5 Brix. While, drip irrigation has 4.85 g/Litre and average sweetness of 10 Brix on the harvested fruit after 90 days of cantaloupe plant cultivation experiment. These have shown that precision irrigation through enhanced smart fibrous capillary irrigation can be used to achieve high water-saving and a good quality yield. It is expected that the research output will help to improve water-saving agriculture towards achieving food security.Keywords: Water Saving; Capillary Irrigation; Drip Irrigation; Internet of Things; Water Use Efficiency


2016 ◽  
Vol 74 (5) ◽  
pp. 1106-1115 ◽  
Author(s):  
L. Mu ◽  
L. Fang ◽  
H. Wang ◽  
L. Chen ◽  
Y. Yang ◽  
...  

Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004–2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhen Zhang ◽  
Yongli Zhang ◽  
Yu Shi ◽  
Zhenwen Yu

AbstractThis study aims to investigate optimization of the basal-top-dressing nitrogen ratio for improving winter wheat grain yield, nitrogen use efficiency, water use efficiency and physiological parameters under supplemental irrigation. A water-saving irrigation (SI) regime was established and sufficient irrigation (UI) was used as a control condition. The split-nitrogen regimes used were based on a identical total nitrogen application rate of 240 kg ha−1 but were split in four different proportions between sowing and the jointing stage; i.e. 10:0 (N1), 7:3 (N2), 5:5 (N3) and 3:7 (N4). Compared with the N1, N2 and N4 treatments, N3 treatment increased grain yield, nitrogen and water use efficiencies by 5.27–17.75%, 5.68–18.78% and 5.65–31.02%, respectively, in both years. The yield advantage obtained with the optimized split-nitrogen fertilizer application may be attributable to greater flag leaf photosynthetic capacity and grain-filling capacity. Furthermore, the N3 treatment maintained the highest nitrogen and water use efficiencies. Moreover, we observed that water use efficiency of SI compared with UI increased by 9.75% in 2016 and 10.79% in 2017, respectively. It can be concluded that SI along with a 5:5 basal-top-dressing nitrogen ratio should be considered as an optimal fertigation strategy for both high grain yield and efficiency in winter wheat.


2002 ◽  
Vol 53 (1) ◽  
pp. 55 ◽  
Author(s):  
Tim R. McVicar ◽  
Guanglu Zhang ◽  
Andrew S. Bradford ◽  
Huixiao Wang ◽  
Warrick R. Dawes ◽  
...  

Increasing competition for water in China, due to industrialisation of its economy and urbanisation of its population, has led to the introduction of water-saving agricultural practices in an attempt to increase agricultural water use efficiency (Ag WUE). This study was conducted to assess whether changes in management practices have increased regional Ag WUE for a focus area covering 20% of the 300 000 km2 North China Plain (NCP). An ‘input–output’ definition of regional Ag WUE was used, where ‘input’ is the water available over the crop growing season and ‘output’ is grain yield. Regional databases of precipitation, irrigation, and yield from 1984 to 1996 were established in a Geographic Information System (GIS) to calculate winter wheat and summer corn Ag WUE on a county basis. For wheat, the average Ag WUE was 7.0 kg/ha.mm in 1984, whereas in 1996 it was 14.3 kg/ha.mm. For corn, Ag WUE increased from 9.0 kg/ha.mm in 1984 to 10.1 kg/ha.mm in 1996, although values >11.5 kg/ha.mm were obtained for both 1991 and 1992. Time series plots of the resulting Ag WUE, and its components, were generated to reveal spatial and temporal variability. Counties with a relatively high mean Ag WUE in combination with low year-to-year consistency have been identified as those with the highest potential for improving Ag WUE management. Total county water resources (WR) were also calculated for the time series, and county-basis normalisation of Ag WUE and WR also showed that there have been recent improvements in Ag WUE. For some counties in wet years, there may be an opportunity to plant larger areas of crop to increase county level Ag WUE. For the focus study site (and for the time series data available), it is most likely that recently introduced water-saving agricultural practices in the NCP are associated with improvements to Ag WUE.


Sign in / Sign up

Export Citation Format

Share Document