scholarly journals River Dissolved Oxygen Prediction Based on Random Forest and LSTM

2021 ◽  
Vol 37 (5) ◽  
pp. 901-910
Author(s):  
Juan Huan ◽  
Bo Chen ◽  
Xian Gen Xu ◽  
Hui Li ◽  
Ming Bao Li ◽  
...  

HighlightsRandom Forest (RF) and LSTM were developed for river DO prediction.PH is the most important feature affecting DO prediction.The model base on RF is better than the model not on RF, and the dimensionality of the input data is reduced by RF.RF-LSTM model is outperformed SVR, RF-SVR, BP, RF-BP, LSTM, RNN models in DO prediction.Abstract. In order to improve the prediction accuracy of dissolved oxygen in rivers, a dissolved oxygen prediction model based on Random Forest (RF) and Long Short Term Memory networks (LSTM) is proposed. First, the Random Forest performs feature selection, which reduces the input dimension of the data and eliminates the influence of irrelevant variables on the prediction of dissolved oxygen. Then build the LSTM river dissolved oxygen prediction model to fit the relationship between water quality data and dissolved oxygen, and finally use real water quality data in the river for verification. The experimental results show that the mean square error (MSE), absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of determination (R2) of the RF-LSTM model are 0.658, 0.528, 13.502, 0.811, 0.744, respectively, which are better than other models. The RF-LSTM model has good predictive performance and can provide a reference for river water quality management. Keywords: Dissolved oxygen prediction, LSTM, Random forest, Time series, Water quality management.

1995 ◽  
Vol 32 (5-6) ◽  
pp. 201-208
Author(s):  
P. J. Ashton ◽  
F. C. van Zyl ◽  
R. G. Heath

The Crocodile River catchment lies in an area which currently has one of the highest rates of sustained economic growth in South Africa and supports a diverse array of land uses. Water quality management is vital to resource management strategies for the catchment. A Geographic Information System (GIS) was used to display specific catchment characteristics and land uses, supplemented with integrative overlays depicting land-use impacts on surface water resources and the consequences of management actions on downstream water quality. The water quality requirements of each water user group were integrated to optimise the selection of rational management solutions for particular water quality problems. Time-series water quality data and cause-effect relationships were used to evaluate different water supply scenarios. The GIS facilitated the collation, processing and interpretation of the enormous quantity of spatially orientated information required for integrated catchment management.


2021 ◽  
Author(s):  
Reza Pramana ◽  
Schuyler Houser ◽  
Daru Rini ◽  
Maurits Ertsen

<p>Water quality in the rivers and tributaries of the Brantas catchment (about 12.000 km<sup>2</sup>) is deteriorating due to various reasons, including rapid economic development, insufficient domestic water treatment and waste management, and industrial pollution. Various parameters measured by agencies involved in water resource development and management and environmental management consistently demonstrate exceedance of the local water quality standards. Between the different agencies, water quality data are available – intermittently from 2009 until 2019 at 104 locations, but generally on a monthly basis. Still, opportunities to improve data availability are apparent, both to increase the amount and representability of the data sets. The opportunity to expand available data via citizen science is simultaneously an opportunity to provide education on water stewardship and empower citizens to participate in water quality management. We plan to involve people from eight communities living close to the river and researchers from two local universities in a citizen-science campaign. The community members would sample weekly at 10 locations, from upstream to downstream of the catchment. We will use probes and test strips to measure the temperature, electrical conductivity, pH, nitrate, phosphate, ammonia, iron, and dissolved oxygen. The results will potentially be combined with the data from government agencies to construct an integrated water quality data set to improve decision making and the quality of community engagement in water resource management.</p>


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3173
Author(s):  
Hye Won Lee ◽  
Bo-Min Yeom ◽  
Jung Hyun Choi

In this study, we investigated the feasibility of using constructed wetlands for non-point source pollution reduction. The effect of constructed wetlands in reducing suspended solids (SS) was analyzed using an integrated modeling system of watershed model (HSPF), reservoir model (CE-QUAL-W2), and stream model (EFDC) to investigate the behavior and accumulation of the pollution sources based on 2017 water quality data. The constructed wetlands significantly reduced the SS concentration by approximately 30%, and the other in-lake management practices (e.g., artificial floating islands and sedimentation basins) contributed an additional decrease of approximately 7%. Selective withdrawal decreased in the average SS concentration in the influents by ~10%; however, the effluents passing through the constructed wetlands showed only a slight difference of 1.9% in the average SS concentration. In order to meet the water quality standards, it was necessary to combine the constructed wetlands, in-lake water quality management, and selective withdrawal practices. Hence, it was determined that the model proposed herein is useful for estimating the quantitative effects of water quality management practices such as constructed wetlands, which provided practical guidelines for the application of further water quality management policies.


Author(s):  
M. D. Bolt

Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state’s thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida’s new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement’s impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.


2013 ◽  
Vol 726-731 ◽  
pp. 3256-3261
Author(s):  
Jia Fei Zhou ◽  
Cong Feng Wang ◽  
De Fu Liu ◽  
Jing Wen Xiang ◽  
Ping Zhao ◽  
...  

Filed hydrology and water quality data were collected near the Gezhouba Dam early December of 2012 to analyze the response of Chinese Sturgeon survival condition to water temperature, dissolved oxygen (DO), pH, transparency (SD) and bottom flow-velocity. The results showed that water temperature lag is unconspicuous. The water temperature of Gezhouba Dam Sanjiang (GDS) was lower than that of Gezhouba Dam River (GDR), and it hindered propagation of sturgeon eggs. DO decreased fast in the vertical water column of GDS, pH ranged from 7.5 to 7.71. The hydrology and water quality were suitable for the life condition of sturgeon eggs and fry, except index of bottom flow-velocity.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mochamad A. Pratama ◽  
Yan D. Immanuel ◽  
Dwinanti R. Marthanty

The efficacy of a water quality management strategy highly depends on the analysis of water quality data, which must be intensively analyzed from both spatial and temporal perspectives. This study aims to analyze spatial and temporal trends in water quality in Code River in Indonesia and correlate these with land use and land cover changes over a particular period. Water quality data consisting of 15 parameters and Landsat image data taken from 2011 to 2017 were collected and analyzed. We found that the concentrations of total dissolved solid, nitrite, nitrate, and zinc had increasing trends from upstream to downstream over time, whereas concentrations of parameter biological oxygen demand, cuprum, and fecal coliform consistently undermined water quality standards. This study also found that the proportion of natural vegetation land cover had a positive correlation with the quality of Code River’s water, whereas agricultural land and built-up areas were the most sensitive to water pollution in the river. Moreover, the principal component analysis of water quality data suggested that organic matter, metals, and domestic wastewater were the most important factors for explaining the total variability of water quality in Code River. This study demonstrates the application of a GIS-based multivariate analysis to the interpretation of water quality monitoring data, which could aid watershed stakeholders in developing data-driven intervention strategies for improving the water quality in rivers and streams.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3371
Author(s):  
Thomas P. Archdeacon ◽  
Tracy A. Diver ◽  
Justin K. Reale

Streamflow intermittency can reshape fish assemblages and present challenges to recovery of imperiled species. During streamflow intermittency, fish can be subjected to a variety of stressors, including exposure to crowding, high water temperatures, and low dissolved oxygen, resulting in sublethal effects or mortality. Rescue of fishes is often used as a conservation tool to mitigate the negative impacts of streamflow intermittency. The effectiveness of such actions is rarely evaluated. Here, we use multi-year water quality data collected from isolated pools during rescue of Rio Grande silvery minnow Hybognathus amarus, an endangered minnow. We examined seasonal and diel water quality patterns to determine if fishes are exposed to sublethal and critical water temperatures or dissolved oxygen concentrations during streamflow intermittency. Further, we determined survival of rescued Rio Grande silvery minnow for 3–5 weeks post-rescue. We found that isolated pool temperatures were much warmer (>40 °C in some pools) compared to upstream perennial flows, and had larger diel fluctuations, >10 °C compared to ~5 °C, and many pools had critically low dissolved oxygen concentrations. Survival of fish rescued from isolated pools during warmer months was <10%. Reactive conservation actions such as fish rescue are often costly, and in the case of Rio Grande silvery minnow, likely ineffective. Effective conservation of fishes threatened by streamflow intermittency should focus on restoring natural flow regimes that restore the natural processes under which fishes evolved.


Author(s):  
Lukman Salihu ◽  
Adekunbi E. Adedayo ◽  
Babajide Jelili Olalekan ◽  
Asani M. Afolabi ◽  
Idi Dansuleiman Mohammed ◽  
...  

In this chapter, a new proposed model was compared with selected standard models and evaluated statistically (model of selection criterion [MSC] and Akaike information criterion [AIC]). Suspended concentration and calculated reaeration rate were used to predict concentration of EPs removable by the aeration and self-purification of the stream. The study revealed that MSC for the new proposed model were 0.75, - 0.44, - 0.32, - 0.45, and - 0.45 respectively. AIC for both dry and wet seasons were 11.85, 42.17, 41.37, 42.17, and 42.25 for the new proposed model, respectively. It was concluded the proposed model performed better than some of the standard models.


Sign in / Sign up

Export Citation Format

Share Document